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ABSTRACT 
 
 

Wet avalanches are a safety concern for all ski areas because they are difficult to 
control artificially and the shift from safe to dangerous wet snow conditions can happen 
very quickly.  Forecasting for wet avalanche conditions in intermountain ski areas, such 
as Bridger Bowl, Montana, can be especially difficult because intermountain snow 
climates can exhibit wet avalanche characteristics of either maritime or continental snow 
climates.  Various statistical models have been developed for avalanche prediction; 
however, most are tailored specifically for dry avalanche forecasting.  Archived 
meteorological, snowpack and avalanche data for the month of March from 1968 to 2001 
(1996 data unavailable) were used to develop 68 possible predictor variables related to 
temperature, snowpack settlement, and precipitation characteristics.  The original Bridger 
Bowl dataset was divided into a ‘new snow’ and an ‘old snow’ dataset.  A ‘new snow’ 
day has newly fallen snow that is less than 48 hours old; an ‘old snow’ day has newly 
fallen snow that is more than 48 hours old.  The two datasets were used to determine 
whether the factors that influence ‘old snow’ and ‘new snow’ wet avalanche occurrence 
differ. Hypotheses were developed and tested to determine which ‘old snow’ and ‘new 
snow’ variables behaved significantly different on days with wet avalanches compared to 
days with no wet avalanches.  The 33 ‘old snow’ significant variables and the 22 ‘new 
snow’ significant variables were analyzed with binomial logistic regression to produce 
one prediction model for ‘old snow’ wet avalanche conditions and another prediction 
model for ‘new snow’ wet avalanche conditions.  The ‘old snow’ model uses the 
prediction day minimum temperature and the two day change in total snow depth as 
predictor variables.  This model has a 75% success rate for calculating accurate wet 
avalanche probabilities for ‘old snow’ days.  The ‘new snow’ model uses the prediction 
day minimum temperature as well as the three day cumulative new snow water 
equivalent as predictor variables.  This model has a 72% success rate for calculating 
accurate wet avalanche probabilities for ‘new snow’ days.   
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INTRODUCTION 
 
 

 At ski areas with a significant avalanche hazard, one of the main purposes of the 

ski patrol is to ensure safe skiing conditions throughout the season by the taking measures 

to reduce skier exposure to avalanche danger.  As spring approaches, snow conditions 

can change rapidly and wet snow avalanches become a hazard for ski areas in all snow 

climates (maritime, intermountain and continental).  Ski patrollers face the difficult task 

of identifying that critical moment when ski slopes are transitioning from a stable wet 

snow situation to a dangerous one.  Wet avalanche conditions are particularly 

problematic because they are difficult to control artificially.  Dry snow avalanche hazards 

are often successfully mitigated by the use of explosives.  However, the physical 

properties of wet snow suppress the propagation of the shock wave essential to trigger 

wet snow avalanches (Armstrong, 1976).  The timing of the onset of dangerous wet snow 

conditions is difficult to determine as well.  Whereas dry snow avalanche hazards can 

develop relatively slowly and ‘weak layers’ can be tracked throughout the majority of the 

ski season, wet snow avalanche hazards can develop in hours or even minutes.  

Difficulties with control and knowledge regarding when wet snow conditions will 

become dangerous make wet avalanches a serious hazard for inbound skiers who can be 

seriously injured by the debris. This is a particularly important issue at Bridger Bowl Ski 

Area where the majority of natural or skier-triggered wet slides start in expert ski areas 

and can run out onto heavily used intermediate and beginner level ski slopes below.  
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 Bridger Bowl is in the Bridger Range in the intermountain snow climate of 

southwest Montana, approximately 19km northeast of Bozeman, Montana (Fig. 1).  This 

is a predominantly east facing ski area but north, west and south aspects are also present.  

The elevation ranges from 1,860m at its base to 2,652m at the top of the ridge above the 

ski area.   

 

 
Figure 1.  Site Location Map 

 

40ft. contour interval 
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The main ski area lies directly below the ridge with a dramatic cliff band that runs 

along its entirety from north to south.  This cliff band creates a particularly challenging 

situation for ski patrollers because it is the starting zone for many of the wet slides that 

can run out onto intermediate and beginner ski slopes below.  Decisions regarding when 

to close the upper mountain are difficult for patrollers because the shift from safe to 

dangerous wet snow stability can be very subtle, and the consequences for not 

recognizing that shift in time, or for underestimating the traveling distance of a natural or 

artificially released wet avalanche can be severe. 

 The uncertainties involving wet snow hazards are related to wet snow 

metamorphic processes and how those processes influence snow strength.  Wet snow is 

different from dry snow in two fundamental ways: the amount of liquid water within the 

snow matrix and the way in which heat is transferred throughout the snowpack (McClung 

and Schaerer, 1993).  Wet snow is considered saturated “when liquid water can be 

squeezed out by hand with moderate pressure” (Colbeck et al., 1990, p.4).  More 

specifically, saturated wet snow has liquid water that occupies about 14% of the pore 

volume, or 7% of the total volume, and has liquid water present in continuous paths 

throughout the pore spaces (Colbeck, 1982).  In dry snow, liquid water cannot be 

squeezed out by hand with moderate pressure, the liquid saturation is less than 14% of the 

pore volume, or less than 7% of the total volume, and air occupies interconnected paths 

throughout the pore spaces (Colbeck, 1982; Colbeck et al., 1990).   

The second fundamental difference between dry and wet snow is the heat transfer 

processes that drive snow metamorphism. Crystal metamorphism is slower in dry snow 
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because the interconnected paths of air present in dry snow do not move heat as 

efficiently as the interconnected paths of liquid water present in wet snow.  In dry snow, 

heat transfer is driven by the vapor flux imposed by the temperature gradient within the 

snowpack (McClung and Schaerer, 1993).  When large temperature gradients are present, 

water vapor moves from areas of higher vapor pressure around the smaller grains to areas 

of lower vapor pressure found around larger grains where the vapor will condense 

resulting in the growth of large snow crystal at the expense of the small snow crystals 

(McClung and Schaerer, 1993).  Metamorphism in wet snow is driven by heat advection 

associated with the continuous paths of liquid water within the snow matrix.  Snow 

strength increases as liquid water initially infiltrates into the snowpack and freezes.  As 

more liquid water is introduced however, heat is transferred from the liquid to the snow 

and metamorphism increases at a very rapid rate (Kattelmann, 1984).  Because the radius 

of curvature is inversely proportional to melting temperature, small grains have a lower 

melting temperature and disappear quickly leaving only large crystals with fewer     

bond-to-bond contacts (Colbeck, 1979).  The result is a snowpack that has lost much of 

its mechanical strength.   

Wet avalanche conditions create safety hazards for ski areas in all three snow 

climates.  Wet avalanches in maritime snow climates are often direct action releases 

resulting from rain on snow events that are common throughout the ski season (McClung 

and Schaerer, 1993).  Ski areas in continental climates have wet avalanches almost 

exclusively in the spring when solar insolation plays a larger role in melting the 

snowpack.  Because intermountain snow climates exhibit both maritime and continental 
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climate characteristics, wet avalanches can release for a variety of reasons such as rain on 

snow (rare at Bridger Bowl), increased incoming solar radiation, warm air advection, or a 

combination of all three (Roch, 1949; LaChapelle, 1966; Armstrong and Armstrong, 

1987; Mock and Kay, 1992).  Patrollers working in intermountain snow climates must 

learn to recognize the wet avalanche hazards associated with both maritime and 

continental snow climates. 

A number of statistical methods have been applied to develop avalanche forecasting 

models.  Most of these models have been tailored to predict dry snow avalanches in 

continental climates, but a handful of studies have examined wet snow avalanche 

prediction separately with varying success.  Perla (1970) used univariate analysis to 

determine which meteorological and snowpack variables correlated most with a ‘hazard 

probability’ for all avalanche types (without separating dry avalanches from wet 

avalanches) for the Alta Highway and Village in Utah (intermountain snow climate 

(Mock and Birkeland, 2000)).  Judson and Erickson (1973) used univariate analysis to 

develop a two-parameter storm index to predict the number of expected avalanches 

(without distinguishing dry avalanches from wet avalanches) on 23 avalanche paths in 

Berthoud Pass, Colorado (continental snow climate (Mock and Birkeland, 2000)).  

Multivariate discriminant analysis was then used to produce eight refined three-variable 

models that predicted the probability of avalanche occurrence on eight avalanche paths in 

Berthoud Pass with an average success rate of 75%.  Multivariate discriminant analysis 

was also used by Bovis (1977) to create forecasting models for both dry snow avalanche 

conditions and wet snow avalanche conditions for the San Juan Mountains in southern 
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Colorado (continental snow climate (Mock and Birkeland, 2000)).  Eleven wet avalanche 

forecasting models were developed with two to four predictor variables and averaged an 

85% success rate for correctly classifying wet avalanche days and an 80% success rate 

for correctly classifying days with no wet avalanches.   

A 1977 article by Fohn et al. compares the success rates of four statistical models 

developed on data collected in Weissfluhjoch/Davos, Switzerland (intermountain snow 

climate (personal communications M. Schneebeli, 2004)).  The first model created 10 

components via principal component analysis that were then subjected to a discriminant 

factor analysis that categorized each day into a ‘dry avalanche day’ a ‘wet avalanche day’ 

or a ‘non avalanche day’.  The finished model used seven predictor variables and had an 

80% success rate for correctly classifying each day as a ‘dry avalanche day’, ‘wet 

avalanche day,’ or ‘non-avalanche day’.  The second model incorporated forward and 

backward step-wise discrimination in the model selection process. Four to seven 

variables were identified that had a 60-70% success rate for dry avalanche prediction 

only. The third model used the same variables as the second model and a similar step-

wise discrimination process, but employed principal component analysis to develop 

elaborate variables prior to the step-wise discrimination process.  The results of the third 

model showed a 60-70% success rate for dry avalanches only.  The fourth model 

separated the avalanche season into early season avalanches and late season avalanches.  

The model was developed using a combination of principal component analysis, dynamic 

clustered analysis and linear or quadratic discrimination.  Each avalanche day was 

classified into one of nine ‘situational’ groups and calculated the probability of an 
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avalanche day based on which group the forecast-day falls into.  This final model had a 

70-80% success rate.  Judson and King (1985) developed a model for early and late 

season stability forecasting in the Colorado Front Range (continental snow climate 

(Mock and Birkeland, 2000)) using probability theory and a statistical sequential analysis 

to evaluate existing snowpack stability.  Rather than predicting the probability of an 

avalanche occurrence, this model gave predictions in terms of the probability for low, 

moderate or high snowpack stability and had a 90% success rate when forecasts were 

compared to observed data.   

A model based on classification and regression tree (CART) analysis was pursued by 

Davis et al. (1999) to determine the relationship between weather and snowpack variables 

and the occurrence of dry snow avalanches at Alta Ski Area, Utah (intermountain snow 

climate (Mock and Birkeland, 2000)) and Mammoth Ski Area, California (maritime snow 

climate (Mock and Birkeland, 2000)).  Both models used 31 input variables and had a 

maximum of 100 decision ‘tree-branches’.  The Alta model had a 97% success rate and 

the model for Mammoth had a 98% success rate for correctly classifying non avalanche 

days (success rate for avalanche days unreported).  Merindol et al., (2002) used the 

nearest neighbor statistical approach for avalanche prediction.  Five predictor variables 

were subjected to a principal component analysis prior to the nearest neighbor analysis 

resulting in a model with a 60% success rate for correctly predicting days without 

avalanches and a 15% success rate for correctly predicting avalanche days.  Wet 

avalanches were not separated from dry avalanches in this model.   
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Advances in computer technology have allowed for Geographical Information 

System (GIS) software to be incorporated into avalanche prediction models.  McCollister 

et al. (2002) developed an avalanche forecasting tool for Jackson Hole Ski Area 

(intermountain snow climate (Mock and Birkeland, 2000)) using nearest neighbors and 

GIS to provide the user with a probabilistic forecast and a graphical display of analogous 

nearest neighbor days using new snow, wind speed and wind direction as predictor 

variables. This tool can be used for wet snow avalanches given the appropriate inputs, 

however this has not yet been done. 

Out of the eight studies described above, only three (Bovis, 1977; Fohn et al., 1977; 

and Judson and King, 1985) considered wet avalanches when developing their models.  

Bovis (1977) was the only study to design prediction models specifically for wet 

avalanches, and these models were developed for a highway corridor in a continental 

climate.  A study on wet snow hypothesis testing and modeling at a ski area in the 

intermountain snow climate is needed. 

Bridger Bowl was selected as the focus of this study because it is within the 

intermountain snow climate and has an excellent dataset with which to test wet avalanche 

hypotheses and develop a wet avalanche prediction model.  One of the objectives of this 

study is to use Bridger Bowl’s weather, snowpack and avalanche data from 1968-2001 

(1996 data unavailable) for the month of March (when wet avalanches are most common 

at Bridger Bowl) to develop and test hypotheses regarding possible wet avalanche 

predictor variables that relate to temperature, snowpack settlement, precipitation, and 

wind characteristics.  Since wet avalanches in intermountain snow climates can occur 
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after precipitation events or after a succession of warm days and/or nights, hypotheses 

will also be tested on whether the factors that drive wet avalanche formation are different 

for ‘new snow’ and ‘old snow’ conditions.  In this case, a ‘new snow’ day has measured 

newly fallen snow that is less than 48 hours in age and an ‘old snow’ day has measured 

newly fallen snow that is greater than 48 hours in age.   

The second objective of this study is to develop two wet avalanche prediction models, 

one model for ‘new snow’ wet avalanche conditions and one model for ‘old snow’ wet 

avalanche conditions.  Variables that are determined to be statistically significant during 

the hypothesis testing phase will be further analyzed with binomial logistic regression to 

determine which variable arrangements provide the best predictive success for the ‘new 

snow’ and ‘old snow’ wet avalanche prediction models.  The final models should use 

predictor variables that require data that are readily available and these variables should 

be easily calculated and/or estimated by the user.     

This study is unique in that it focuses specifically on wet avalanche prediction for ski 

area purposes in the intermountain snow climate.  The 32-year Bridger Bowl dataset 

provides a substantial amount of information on which sound statistical analysis can be 

performed.  The statistical methods are rigorous and have a probabilistic approach to wet 

avalanche prediction rather than a deterministic, or ‘yes/no’ approach.  Finally, this study 

is the first to examine wet old snow and wet new snow avalanche conditions. 
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METHODS 
 
 

Data 
 

 
Data Quality 
 

The Bridger Bowl meteorological, snowpack and avalanche data come from two 

sources.  The 1968 to 1995 records were downloaded from the West Wide Avalanche 

Network (WWAN, 2002).  The 1997 to 2001 records were obtained from the Bridger 

Bowl archives (1996 data were missing) (F. Johnson personal communication, 2002).  

Wind data were not available for Bridger Bowl.  Seven hundred millibar daily average 

wind direction and velocity data from 1968-2001 were acquired from the National 

Weather Service’s NCEP/NCAR Reanalysis Project database (NCEP/NCAR, 2004).  

Since 1968, meteorological and snowpack data have been observed and recorded 

by Bridger Bowl patrol each morning during the ski season at the Alpine weather station 

located on the north side of the Bridger Bowl Ski Area at approximately 2260m in 

elevation (Mock and Birkeland, 2000).  The Alpine weather station is a standardized 

study plot with typical weather and snowpack instruments including snow board, snow 

stake, recording weighing mechanical precipitation gage, and maximum/minimum 

mercury thermometers.  Weather and snowpack data include 24 hour maximum 

temperature, 24 hour minimum temperature, total snowpack depth, 24 hour new snow 

depth, 24 hour new snow water equivalent (SWE), and 24 hour rain totals.  Temperature 

data are recorded to the nearest 1°F, snow depth measurements are recorded to the 



11 

nearest 1.0 inch, and SWE measurements are recorded to the nearest 0.01 inch.  

Avalanche data have been collected by patrol since 1968 as well.  This dataset uses the 

U.S. avalanche recording scale, which includes avalanche type (dry slab, dry loose, wet 

slab and wet loose), cause of release (artificial or natural), size of avalanche (relative to 

avalanche path), running surface (ground, old snow or new snow surface) and location of 

release (Perla and Martinelli, 1978). For the purpose of this study, only ‘wet slab’ and 

‘wet loose’ avalanches are of interest.  Wet slab avalanches make up 31% of the total 

number of wet avalanches and wet loose avalanches make up the remaining 69%. 

The Bridger Bowl weather, snowpack and avalanche database is one of longest 

and most complete records available (K. Birkeland personal communication, 2004), 

however there are problems that need to be kept in mind when interpreting the results.  

Fortunately, the Alpine weather station has remained in its original location and the same 

data collection routines have continued since 1968.  However over the years, the spruce 

trees that surround the weather station have grown and have caused unknown changes in 

the records due to the shelter they now provide.   

The avalanche dataset is also of concern.  Questions that arise regarding this 

dataset are; ‘Is Bridger Bowl patrol correctly identifying and labeling wet avalanches?’ 

and ‘Are all of the wet avalanches being recorded?’   Colbeck (1982, 1990) and others 

have defined wet snow in the funicular regime, as snow with a liquid water content (as 

percentage of the total volume) of about 7% or greater.  Snow is considered ‘very wet’ 

when liquid water can be “pressed out by moderately squeezing the snow in the hands, 

but there is an appreciable amount of air confined within the pores” (Colbeck, 1990, p.4).  
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This corresponds to a liquid water content of approximately 8-15%.  Snow with a liquid 

water content greater than 15% is termed ‘slush’ snow and is “flooded with water and 

contains a relatively small amount of air” in the pores (Colbeck, 1990, p.4).  A wet snow 

avalanche then, is one that has free water as the primary cause of release.  Interviews with 

Bridger Bowl patrol confirm that the liquid water content is never measured to make a 

wet avalanche determination, but they will often use the ‘squeeze test’ (Colbeck et al., 

1990) to do so.  The way in which patrollers have identified wet avalanches in the past is 

subjective.  Patrollers may have decided an avalanche is wet by observing its flow 

characteristics. Compared to dry avalanches, wet avalanches are relatively slow moving 

because there is a great deal of friction between the moving snow and the sliding surface 

(McClung and Schaerer, 1993).  There is rarely a dust cloud of suspended material in a 

wet slide.  Ski patrollers may look at the starting zones for clues too.  Most wet slides 

start as point releases. Often the snow around the starting zone looks and feels wet.  They 

may look at the bed/sliding surface.  Usually the sliding surface looks and/or feels wet.  

During the slide, wet snow will gouge the soft sliding surface, “causing scoring or the 

formation of grooves and entrainment of rocks, dirt, and other material…Wet snow will 

follow terrain features much more readily than dry snow” (McClung and Schaerer, 1993, 

p. 108).   

When there is concern about wet snow conditions at Bridger Bowl, patrollers are 

assigned a route on the mountain and continually ski this route to observe the changes 

occurring within the snowpack.  Patrollers look for increasing ski, boot and pole 

penetration into the snow as a sign that the snow is losing cohesion.  Patrollers may 
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perform ‘squeeze tests’ (Colbeck, 1990) or try to make ‘snow doughnuts’ or ‘snow 

pinwheels’ by throwing snowballs onto the snow surface along their route to observe 

increasing water content. The snow temperature is taken at 20cm below the snow surface 

in areas of concern to track increasing snow temperature. They also look for increased 

melting around rocks, trees, cirques and bowls. Melt rates are advanced where radiation 

is absorbed by rocks and trees and re-radiated as longwave energy, and in areas where 

there is increased reflection and re-absorption such as cirques and bowls.  When 

patrollers are observing wet snow conditions and an avalanche releases during wet snow 

conditions there is enough evidence to suggest that the slide is wet.  A dry snow 

avalanche could be misclassified if its downslope motion creates enough friction and heat 

that the debris begins to melt.  Once the motion stops, the warmed debris can refreeze and 

have a similar appearance to wet snow avalanche debris (McClung and Schaerer, 1993).  

Given the subjective nature of what is considered a ‘wet’ avalanche or ‘dry’ avalanche, 

there is a possibility that a number of the avalanches labeled as ‘wet’ in the Bridger Bowl 

records may not be technically ‘wet’.  However, given the defining characteristics of wet 

avalanches and the experience of the Bridger Bowl ski patrol, there are likely “very few, 

if any [misclassified wet avalanches] in the records” (K. Birkeland personal 

communication, 2004).   

Because it is impossible to know for certain if there are misidentified wet 

avalanches in the dataset, all of the data were retained in the study and no attempts were 

made to discard outliers.  A cursory quality control check was performed on the entire 

dataset.  Three points of data were removed because they had recordation errors. For 
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example, March 24, 1971 was deleted from the dataset because the total snowpack depth 

was recorded as 0cm while the total snowpack depth on March 23rd was 228.6cm and the 

total snowpack depth on March 25th was 241.3cm. The reader should also be aware that 

the avalanche dataset includes both natural and artificially released avalanches.  Naturally 

releasing wet avalanches make up 42% of the total number of recorded wet avalanches at 

Bridger bowl and the remaining 58% were artificially released wet avalanches.  The 

results therefore, are applicable only to the Bridger Bowl ski area and not the surrounding 

back county terrain.  Model results given in the discussion section should not be 

interpreted as the probability of a wet avalanche release, but as the probability of 

avalanches identified as wet by Bridger patrol.   

The other concern regarding the avalanche dataset is how consistent patrollers 

were in recording each and every wet avalanche that released in March.  Patrollers admit 

that some wet avalanches may go unrecorded, especially towards the end of March when 

the ski season is coming to an end.  A more thorough avalanche dataset may provide 

better results, however compared to most meteorological, snowpack and avalanche 

datasets, Bridger Bowl’s is considered to be one of the most thorough and consistent 

records available (K. Birkeland personal communication, 2004; Mock and Birkeland, 

2000).  

The discussion regarding the dataset problems is not intended to discount the 

capabilities of the Bridger patrol, but is to make the reader aware of the possible 

unknowns that exist in this dataset.  Bridger Bowl is very fortunate.  Over half of its 

patrol staff has 10 to 20+ years of patrolling experience at Bridger Bowl.  The patrollers 
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know the mountain extremely well and are very qualified to distinguish dry avalanches 

from wet avalanches. 

 
Data Restriction 
 

The Bridger Bowl dataset was restricted to all days in March from 1968-2001 

because wet avalanches occur most frequently in the spring, particularly in March, in 

intermountain snow climates.  April data were omitted because the weather, snowpack 

and avalanche data were not consistently recorded each day and the final April date on 

which Bridger Bowl Ski Area closes operation varies from year to year (Fig. 2).   

 

Bridger Bowl Monthly Wet Avalanche Totals

Jan 5%Feb 6%

March 54%
April 32%

Nov 2%
Dec 1%

Figure 2.  Bridger Bowl Monthly Wet Avalanche Distribution 1968-2001 

 
The dataset was modified so that the presence or absence of a recorded wet 

avalanche became a binomial response.  Days with one or more recorded wet avalanches, 

regardless of size or type of release are labeled as  ‘wet avalanche days’ and have a 

(data incomplete) 
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binomial response equal to ‘1’.  Days with no recorded wet avalanches are labeled as 

either ‘no-wet-avalanche days’ or ‘days with no wet avalanches’ and have a binomial 

response of ‘0’.  ‘No-wet-avalanche days’ may have had recorded dry avalanches or no 

recorded avalanches at all, but given that there are no recorded wet avalanches they are 

termed ‘no-wet-avalanche days’.  Because wet avalanches in intermountain climates have 

been observed to release primarily after precipitation events followed by increased solar 

insolation, or after a succession of warm days and/or nights, there is reason to believe that 

the factors which drive wet avalanche formation are different for new snow conditions 

and old snow conditions.  To test this idea, the original Bridger Bowl dataset containing 

all days in March from 1968-2001 was divided into a ‘new snow’ dataset and an ‘old 

snow’ dataset where a ‘new snow’ day has measured newly fallen snow that is less than 

48 hours in age and an ‘old snow’ day has measured newly fallen snow that is greater 

than 48 hours in age.   

 
Variable Description 
 

The predictor variables used in this study were created to represent the processes 

that influence wet avalanche formation such as temperature change, changes in snowpack 

depth, new snow accumulation, new snow water equivalent, snow density, snow albedo, 

and relative humidity.  Similar variables were found to be contributory factors to wet and 

dry avalanche conditions by Perla (1970), Fohn et al. (1977), Bovis (1977), Judson and 

King (1985), Davis et al. (1999), and Merindol et al. (2002).  Old snow wet avalanche 

conditions may develop more slowly than new snow wet avalanche conditions.   More 

time and greater amounts of energy are required to melt the numerous and strong bonds 



17 

that develop in old snow.  In contrast, new snow will retain liquid water more readily 

because there are more pores that are smaller in size within the new snow matrix.  As 

more liquid water is retained, metamorphism will occur at a rapid rate leading to the 

quick development of cohesionless snow conditions. 

To test whether important patterns emerge over time, a ‘time lag’ was built into 

each variable.  Studies by Bovis (1977), Fohn et al. (1977), Davis et al. (1999) and 

Gassner et al. (2000) incorporated up to five preceding days into the variables used in 

their studies and found that ‘three days prior’ variables were the oldest significant 

variables, with only a few exceptions.  This study limits the number of preceding or 

leading days to three.  The variables are defined within each dataset in terms of 

‘prediction day’ (0), ‘one day prior’ (-1), ‘two days prior’ (-2), and ‘three days prior’      

(-3).  ‘Prediction day’ always refers to the day the model is predicting for, usually the 

current day, and is the day that the ‘one day prior’, ‘two days prior’ and ‘three days prior’ 

variables lead up to.  A ‘prediction day’ may or may not have recorded wet avalanches.  

‘One day prior’ always refers to the day that is one day prior to the ‘prediction day’; ‘two 

days prior’ always refers to the day that is two days prior to the ‘prediction day’; and 

‘three days prior’ always refers to the day that is three days prior to the ‘prediction day’.  

Figure 3 serves as an example for the time-lag concept.  Suppose that today, the day wet 

avalanche probability is being predicted for, is Monday.  Any variable with an 

observation taken on this day is given a ‘0’ subscript.  Sunday is considered one day prior 

to the prediction day and any observation taken on this day is given a ‘-1’ subscript. 

Saturday is two days prior to the prediction day and observations taken on this day are 
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given subscript of ‘-2’.  Friday is three days prior to the prediction day and observations 

taken on this day are given a ‘-3’ subscript. 

 
 
 

 
    
                       ‘One Day Cumulative Variable’ 
 

                   ‘Two Day Cumulative Variable’ 
 

‘Three Day Cumulative Variable’ 
 
Figure 3.  Predictor Variables With Time-Lag Example 

 
The variables are either single-day measurements or cumulative day 

measurements.  For example, the maximum temperature variables listed in Table 1 are 

MaxT0, MaxT-1, MaxT-2, MaxT-3, AvgMaxT0, -1, AvgMaxT0, -1, -2, AvgMaxT0, -1, -2, -3.  

MaxT0, MaxT-1, MaxT-2, and MaxT-3 are single day measurements, that is MaxT0 is the 

maximum temperature recorded for the prediction day; MaxT-1 is the maximum 

temperature recorded one day prior to the prediction day; MaxT-2 is the maximum 

temperature recorded two days prior to the prediction day; and MaxT-3 is the maximum 

temperature recorded three days prior to the prediction day.  AvgMaxT0, -1,      

AvgMaxT0, -1, -2, and AvgMaxT0, -1, -2, -3 are cumulative day measurements.  The 

subscripts indicate what ‘prior’ days are included in the cumulative variable.  For 

example, AvgMaxT0, -1 is the averaged maximum temperature of the prediction day and 

the one day prior observations. 

Friday 
Three Days Prior 

Variable -3 

Saturday 
Two Days Prior 

Variable -2 

Sunday 
One Day Prior 

Variable-1 

Monday 
Prediction Day 

Variable0 
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The 68 variables used in the analysis (Table 1) can be grouped into three basic 

categories; temperature variables, snowpack settlement variables, and precipitation 

variables.  Each variable will be briefly defined below, more complete definitions can be 

found in Appendix A (“Definitions”). 

 
Table 1.  General Hypotheses 

Predictor Variable Hypothesis 

Day of Year 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

As Day of Year increases, more solar radiation (energy) is 
available for snow melt. 

Maximum Temperature: 
MaxT0, MaxT-1, MaxT-2, MaxT-3, 
AvgMaxT0, -1, AvgMaxT0, -1, -2, 
AvgMaxT0, -1, -2, -3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Warmer maximum temperatures indicate increased available 
energy for snow melt. 

Minimum Temperature: 
MinT0, MinT-1, MinT-2, MinT-3, 
AvgMinT0, -1, AvgMinT0, -1, -2, 
AvgMinT0, -1, -2, -3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Warmer minimum temperatures reduces the amount of energy 
required to warm the snowpack to 0°C prior to melt. 

Average Temperature: 
AvgT0, AvgT-1, AvgT-2, AvgT-3, 
AvgAvgT0, -1, AvgAvgT0, -1, -2, 
AvgAvgT0, -1, -2, -3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Warmer average temperatures indicate increased available energy 
for snow melt. 

Degree Day (Maximum 
Temperature): 
DDMaxT0, DDMaxT0, -1, 
DDMaxT0, -1, -2, DDMaxT0, -1, -2, -3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

The degree day number using maximum temperature is directly 
proportional to snowmelt depth (Rango and Marinec 1995).  
Increased degree day values indicates increased snowmelt depth. 

Degree Day (Average 
Temperature): 
DDAvgT0, DDAvgT0, -1, 
DDAvgT0, -1, -2, DDAvgT0, -1, -2, -3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

The degree day number using average temperature is directly 
proportional to snowmelt depth (Rango and Marinec 1995).  
Increased degree day values indicates increased snowmelt depth. 

Maximum Temperature Range: 
MaxT0-MaxT-1, MaxT0-MaxT-2,        
MaxT0-MaxT-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Positive values indicate warming leading up to the prediction day.  
Higher values increase the probability of wet snow conditions. 

Minimum Temperature Range: 
MinT0-MinT-1, MinT0-MinT-2,  
MinT0-MinT-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Positive values indicate less cooling leading up to the prediction 
day.  Higher values reduce the amount of energy required to raise 
the snow temperature to 0°C prior to melt. 
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Predictor Variable Hypothesis 

Average Temperature Range: 
AvgT0-AvgT-1, AvgT0-AvgT-2,  
AvgT0-AvgT-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Positive values indicate warming leading up to the prediction day.  
Higher values increase the probability of wet snow conditions. 

Day-Time Temperature Range: 
MaxT0-MinT0, MaxT-1-MinT-1, 
MaxT-2-MinT-2, MaxT-3-MinT-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Positive values indicate ambient air temperature has increased 
during the day and energy available to melt snow has increased. 

Overnight Temperature Range:   
MaxT-1-MinT0, MaxT-2-MinT-1,  
MaxT-3-MinT-2 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Warming (-) or minimal cooling (+) will reduce the amount of 
energy required to heat the snow to 0°C the following day. 

Change in Total Snowpack 
Depth: 
HS0-HS-1, HS0-HS-2, HS0-HS-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

(-) values indicate a decrease in total snow depth.  Greater 
decreases are a response to free water in the snowpack. 

Total Snowpack Settlement: 
Stl0, -1, Stl0, -1, -2, Stl0, -1, -2,-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Similar to ‘Change in Total Snowpack Depth’ variable, but 
‘Settlement’ excludes new snow depths.  (-) values indicate a 
decrease in total snow depth.  Greater settlement is a response to 
free water in the snowpack. 

Age of New Snow: 
HNA0, HNA-1, HNA-2, HNA-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

The age of new snow will determine whether new or old snow wet 
avalanche conditions will be of concern and whether new and old 
snow have different wet avalanche predictors. 

New Snow Depth: 
HN0, HN0,-1,, HN0,-1,-2, HN0,-1,-2,-3 

H0: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new          

Ha: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new          

Daily new snow depth will not be a significant predictor of wet 
snow conditions because it does not describe how the new snow 
responds to warming conditions. 

New Snow Water Equivalent: 
HNW0, HNW0,-1,, HNW0,-1,-2, 
HNW0,-1,-2,-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

Larger snow water equivalent values increase the percent liquid 
water within the snow matrix.  Increased percent liquid water 
decreases the amount of energy required to shift snow into the 
funicular regime. 

New Snow Density: 
HND0, HND0,-1,, HND0,-1,-2,  
HND0,-1,-2,-3 

H0: µ0old = µ1old; µ0new = µ1new; µ1old = µ1new   

Ha: µ0old ≠ µ1old; µ0new ≠ µ1new; µ1old ≠ µ1new 

As new snow density increases, albedo decreases, water content 
increases, melt depth increases and wetting front accelerates. 

 
 

Table 1.  Continued 
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Temperature Variables  Temperature variables describe the daily temperatures 

and the change in temperature leading up to the prediction day.    The ‘day’ of year 

variable (Table 1) is considered a surrogate variable for available radiation.  If January 1st 

is equal to day 1 of a year, then March 1st is equal to day 60 (or day 61 in a leap year).  

Maximum temperature variables (Table 1) include single day and cumulative day 

measurements.  Single day measurements are maximum temperatures recorded for the 

prediction day, one day prior to the prediction day, two days prior to the prediction day 

and three days prior to the prediction day (MaxT0,  MaxT-1, MaxT-2, MaxT-3 

respectively).  The cumulative day measurements are the average maximum temperatures 

(AvgMaxT0, -1, AvgMaxT0, -1, -2, AvgMaxT0, -1, -2, -3) calculated by averaging the 

maximum temperature recorded on the prediction day and one day prior (AvgMaxT0, -1); 

the prediction day, one day prior, and two days prior (AvgMaxT0, -1, -2); and the prediction 

day, one day prior, two days prior and three days prior (AvgMaxT0, -1, -2, -3).  The 

minimum temperature variables (MinT0, MinT-1, MinT-2, MinT-3, AvgMinT0, -1, 

AvgMinT0, -1, -2, AvgMinT0, -1, -2, -3) and the average temperature variables (AvgT0,   

AvgT-1, AvgT-2, AvgT-3, AvgAvgT0, -1, AvgAvgT0, -1, -2, AvgAvgT0, -1, -2, -3) use the same 

definitions applied to the maximum temperature variables (Table 1).   

Two sets of degree day variables (Table 1) are tested using maximum temperature 

in the calculations (DDMaxT0, DDMaxT0, -1, DDMaxT0, -1, -2, DDMaxT0, -1, -2, -3) and 

average temperature in the calculations (DDAvgT0, DDAvgT0, -1, DDAvgT0, -1, -2, 

DDAvgT0, -1, -2, -3).  Linsley et al. (1958) defines a degree day as a departure of one degree 

per day in the daily maximum or average temperature from 0°C.  For example, DDMaxT0 
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is the difference between the prediction day’s maximum temperature and 0°C.  

DDMaxT0, -1 is the difference between the prediction day’s maximum temperature and 

0°C plus the difference between the one day prior maximum temperature and 0°C.  The 

same concept is extended to DDMaxT0, -1, -2 and DDMaxT0, -1, -2, -3.  The degree day 

variables related to average temperature (DDAvgT0, DDAvgT0, -1, DDAvgT0, -1, -2, 

DDAvgT0, -1, -2, -3) use the same calculations as the degree day maximum temperature 

variables. 

The last group of temperature variables describe different types of temperature 

changes occurring over various time periods (Table 1).  Maximum temperature range 

variables (MaxT0-MaxT-1, MaxT0-MaxT-2, MaxT0-MaxT-3), minimum temperature range 

variables (MinT0-MinT-1, MinT0-MinT-2, MinT0-MinT-3) and average temperature range 

variables (AvgT0-AvgT-1, AvgT0-AvgT-2, AvgT0-AvgT-3) are all calculated the same 

way.  For example, MaxT0-MaxT-1 is simply the difference between the prediction day 

maximum temperature and the one day prior maximum temperature; MaxT0-MaxT-2 is 

the difference between the prediction day maximum temperature and the two days prior 

maximum temperature; and MaxT0-MaxT-3 is the difference between the prediction day 

maximum temperature and the three days prior maximum temperature. The day-time 

temperature range variables (MaxT0-MinT0, MaxT-1-MinT-1, MaxT-2-MinT-2, MaxT-3-

MinT-3) use single day observations to calculate how much the air temperature increased 

or decreased each day.  To calculate the day-time temperature change that occurred one 

day prior to the prediction day (MaxT-1-MinT-1) subtract the one day prior minimum 

temperature (MinT-1) from the one day prior maximum temperature (MaxT-1).  The 
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overnight temperature range variables (MaxT-1-MinT0, MaxT-2-MinT-1, MaxT-3-MinT-2) 

use single day measurement to calculate how much the air temperature increased or 

decreased each night.  These variables are calculated by subtracting the previous day’s 

maximum temperature from the next day’s minimum temperature. 

 
Snowpack Settlement Variables  Snowpack settlement variables are intended to 

describe how the snowpack responds to temperature changes and loading.  Two types of 

snowpack change are tested; the total change in snowpack depth and total snowpack 

settlement.  The key difference is the total change in snowpack depth variable accounts 

for the addition of new snowfall and the settlement variable excludes new snowfall from 

its calculations (Table 1).  The total change in snowpack depth variables (HS0-HS-1,   

HS0-HS-2, HS0-HS-3) describe how much the total depth of the snowpack has increased or 

decreased over one day, two day and three day time intervals.  The total snowpack 

settlement variables (Stl0, -1, Stl0, -1, -2, Stl0, -1, -2,-3) exclude new snowfall amounts and 

therefore represent only those processes that will decrease the snowpack depth.  One day 

settlement (Stl0, -1) is calculated by subtracting the one day prior total snow depth (HS-1) 

and the prediction day new snow totals (HN0) from the prediction day total snow depth 

(HS0), (Stl0, -1 = HS0-HS-1-HN0).  Settlement that has occurred over the two days leading 

up to the prediction day is calculated with the following equation: Stl0, -1, -2 = HS0 - HS-2 - 

HN0 - HN-1. Three-day settlement uses the equation: Stl0, -1, -2, -3 = HS0 - HS-3 - HN0 - HN-1 

– HN-2. 
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Precipitation Variables The precipitation variables describe the age, depth, snow 

water equivalent, and density of the newly fallen snow as well as the accumulated totals 

and day-to-day changes leading up to the prediction day (Table 1).  The age of new snow 

variables (HNA0, HNA-1, HNA-2, HNA-3) describe how old (in days) the newly fallen 

snow is on the prediction day (HNA0), one day prior (HNA-1), two days prior (HNA-2), 

and three days prior (HNA-3) to the prediction day.  For example, if it is snowing on the 

prediction day, the new snow is 0 days old.  If the most recent snowfall occurred one day 

prior to the prediction day, the new snow is 1 day old and if the most recent snowfall 

occurred two days prior to the prediction day, the new snow is 2 days old, and so forth.  

New snow depth variables (HN0, HN0,-1,, HN0,-1,-2, HN0,-1,-2,-3) are cumulative variables 

except for the prediction day (HN0) measurement.  The one-day cumulative snowfall 

variable (HN0,-1) is the sum of the prediction day new snow depth (HN0) and the one day 

prior new snow depth (HN-1) (HN0,-1 = HN0+HN-1).  The two-day cumulative new 

snowfall variable (HN0,-1,-2) is calculated using the following equation:  HN0,-1,-2 =  

HN0+HN-1+HN-2. The three-day cumulative new snowfall variable (HN0,-1,-2,-3) uses the 

equation: HN0,-1,-2 =  HN0+HN-1+HN-2+HN-3.  The new snow water equivalent variables 

(HNW0, HNW0,-1,, HNW0,-1,-2, HNW0,-1,-2,-3) are calculated the same way, except the new 

snow water equivalent measurement are used in place of the new snow depth 

measurements.  The cumulative new snow density variables (HND0, HND0,-1,, HND0,-1,-2,  

HND0,-1,-2,-3) follow the same concept of the new snow total and new snow water 

equivalent measurements, but require a few more calculations.  The prediction day new 

snow density is determined by multiplying the prediction day new snow water equivalent 
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by 1000kg/m3
 (the density of liquid water) and dividing the product by the prediction day 

new snow depth (HND0 = (HNW0*1000kg/m3)÷HN0). One day cumulative new snow 

density is calculated by multiplying the cumulative one day snow water equivalent by 

1000kg/m3, dividing the product by the one day prior new snow depth and adding the 

total to the prediction day new snow density (HND0,-1 = HND0 + (HNW-1 * 

1000kg/m3)÷HN-1).  The two day cumulative new snow density is the prediction day new 

snow density plus the one day prior new snow density and two days prior new snow 

density (HND0,-1,-2 = HND0,-1 + (HNW-2 * 1000kg/m3) ÷ HN-2).  The three day 

cumulative new snow density calculations follow the same pattern,                           

(HND0,-1,-2,-3 = HND0,-1,-2 + (HNW-3*1000kg/m3)÷HN-3).   

Rainfall was not used as a predictor variable because rain is a relatively rare 

occurrence at Bridger Bowl (only 15 days out of the 1046 total number of days in the 

dataset had recorded rain totals). 

 
Wind Variables  Unfortunately, wind direction and speed data were not archived 

at Bridger Bowl.  Wind direction and wind speed data at the 700mb level were 

downloaded from the National Weather Service NCEP/NCAR Reanalysis Project 

database (NCEP/NCAR, 2004) (Table 1). Wind speed data were eventually dropped from 

the analysis because wind velocities at the 700mb level were not considered 

representative of the wind speeds occurring near the snow surface.   The wind direction 

data were eventually dropped from the analysis because the NCEP/NCAR wind direction 

data were extrapolated over a 2.5 x 2.5 (latitude/longitude) degree grid.  The large area 
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over which the wind direction data are averaged reduces the affects of topography, thus 

making the data not representative of the true wind direction at Bridger Bowl Ski Area.  

To assess wind effectively local wind sensors are needed near the ground.  The high 

variability caused by complex mountain terrain makes this approach impractical. 

Null and alternative hypotheses as well as a brief statement for support are 

provided in Table 1.  These will be examined in further detail in the discussion section. 

 
Hypothesis Testing Methods 

 
 

The study is divided into two phases; the hypothesis testing phase and the model 

development phase.  There are two main hypotheses being tested.  The first hypothesis 

will test which meteorological and snowpack predictor variables are significant in 

predicting old snow and new snow wet avalanche conditions, and whether there are 

unique predictor variables for old and new snow wet avalanche conditions. For each 

variable in the old snow dataset and new snow dataset this hypothesis asks: ‘Is the mean 

or median for no-wet-avalanche avalanche days (µ0) equal to the mean or median for wet 

avalanche days (µ1) at α = 0.05 significance level?’ (Table 1).  The null hypothesis is 

accepted when the means or medians test results give a p-value that is greater than 0.05, 

which shows that the means or medians are not significantly different from one another 

(H0: µ0 = µ1).  In other words, the wet avalanche days and days with no wet avalanches 

have the same means and therefore the variable will not be a significant predictor in the 

model selection phase to come.  The alternative hypothesis is accepted when the means 

or medians test results give a p-value that is less than or equal to 0.05, which shows that 



27 

the means or medians are significantly different from one another (H1: µ0 ≠ µ1).  In other 

words, the wet avalanche days and days with no wet avalanches have different means for 

the variable of interest and should be further tested in the model selection phase of the 

study.  

The second hypothesis test will determine whether the significant variables from 

the old snow dataset have different means or medians than the same variables from the 

new snow dataset.  For each significant variable (determined by the first hypothesis test), 

this hypothesis question asks: ‘Is the mean or median for old snow wet avalanche days 

(µ1old) equal to the mean or median for new snow wet avalanche days (µ1new) at α = 0.05 

significance level?’ (Table 1).  The null and alternative hypotheses are accepted on the 

same basis as described in the first hypothesis test.  Acceptance of the null hypothesis 

shows that old snow wet avalanche day means or medians are not significantly different 

than new snow wet avalanche day means or medians (H0: µ1old = µ1New).  Acceptance of 

the alternative hypothesis shows that old snow and new snow wet avalanche day means 

or medians are significantly different (µ1Old ≠ µ1New) and that even though the variable 

being tested is a significant predictor for both old snow and new snow wet avalanche 

conditions, it behaves uniquely depending on the age of the snow.  

Before these hypotheses can be tested, the appropriate means or medians test must 

be determined by testing each variable in the old snow dataset and new snow dataset for 

normality and equal variance at the α = 0.05 significance level.  The Anderson-Darling 

Normality Test was used to test each variable for normality.  The null hypothesis for this 

test states that the data are normally distributed (p-value > 0.05), and the alternative 
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hypothesis states that the data are not normally distributed (p-value < 0.05).  See 

Appendix B for results (“Old Snow Hypothesis Testing Results”, “New Snow Hypothesis 

Testing Results” and “Old and New Snow Wet Avalanche Day Hypothesis Testing 

Results”). 

 Each variable from the old and new snow datasets were then tested for equal 

variance.  An F-Test was used to determine equal variance for variables that were 

normally distributed (Minitab, Inc., 2000).  Levene’s Test for equal variance was used for 

variables with nonparametric, or non-normal distributions (Minitab, Inc., 2000).  The null 

hypothesis for both tests states that the data do not have significantly different variance 

(p-value > 0.05), and the alternative hypothesis states that the data have significantly 

different variance (p-value < 0.05).  See Appendix B for results (“Old Snow Hypothesis 

Testing Results”, “New Snow Hypothesis Testing Results” and “Old and New Snow Wet 

Avalanche Day Hypothesis Testing Results”). 

 Many variables were found to have nonparametric distributions and/or unequal 

variance.  Ideally, the 2-Sample T-Test with pooled (equal) variance is used to test for 

equal means because it tends to produce the narrowest confidence intervals for the 

means; however, this test is restricted to variables with normal distributions and equal 

variance (Minitab, Inc., 2000).  If necessary, up to three transformations were attempted 

for each variable to correct distribution and variance problems.  The Box-Cox 

Transformation procedure is one method of estimating the best-fit ‘lambda’, where 

lambda (λ) is the estimated exponent for each variable being transformed (Minitab, Inc., 

2000). When a Box-Cox Transformation is performed using MiniTab statistical software, 
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the user is given a 95% confidence interval for lambda with an ‘optimal’ estimate of 

lambda and two closely competing values for lambda denoted as ‘lower alternate’ and 

‘upper alternate’. The first transformation attempt used a recognizable or ‘common’ 

lambda value such as 0.5, 2 or zero that fell within the given 95% confidence interval 

(0.5 is the square-root of the variable, 2 is the square of the variable and zero is the log 

transformation of the variable).  If this transformation did not correct the variable’s non-

normality or unequal variance, a second transformation was performed using the 

estimated ‘optimal’ lambda.  If the ‘optimal’ transformation did not correct the variable’s 

distribution and variance problems a final transformation was attempted using one of the 

two estimated competing values of lambda.  See Appendix B for the transformation 

accepted for each variable (“Old Snow Hypothesis Testing Results”, “New Snow 

Hypothesis Testing Results” and “Old and New Snow Wet Avalanche Day Hypothesis 

Testing Results”). 

A 2-Sample T-Test with pooled sample variance was used to test the means of 

those variables with normal distributions and equal variance (Neter et al., 1996).  A        

2-Sample T-Test with unpooled variance was used to test the means of those variables 

with normal distributions and unequal variance.  The Mann-Whitney test for equal 

medians was used for variables that remained nonparametric with equal variance after 

transformation (Neter et al.,1996).   The null hypotheses for each test states that the data 

do not have significantly different means or medians (p-value > 0.05), and the alternative 

hypothesis states that the data have significantly different means or medians                  

(p-value < 0.05).    
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 There were several instances where variables continued to have nonparametric 

distributions and unequal variances even after the three transformation attempts.  The 

Kolomogorov-Smirnov test could be performed to test the distributions of these variables, 

however this is considered to be a test with poor statistical efficiency (Neter et al., 1996).  

Instead, the variables’ means were tested using the most normally distributed form of the 

variable in a 2-Sample T-Test with unequal variance. This decision was based on the fact 

that the 2-Sample T-Test is a very robust test and can produce reliable results for 

nonparametric data especially when the datasets are large (Neter et al., 1996).   

 
Model Development Methods 

 
 

After the significant old snow and new snow variables were identified, binomial 

logistic regression was used to build an ‘old snow wet avalanche probability model’ and a 

‘new snow wet avalanche probability model’.  Only those variables that are determined to 

be significant old snow and new snow predictors during the hypothesis testing phase will 

be used in the model selection phase of this study. The purpose of this phase of the study 

is to determine which significant old snow and new snow variables best predict the 

probability of spring-time wet avalanche conditions at Bridger Bowl.   

 The intent is to build two wet avalanche prediction models for old and new snow 

conditions that are easy-to-use.  They should provide dependable and practical results 

that can be readily understood by any user.  To do this, the variables included in the 

model should not require additional calculations that the user may not be immediately 

familiar with.  Only variables whose values are readily known, or have only one 
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unknown meteorological or snowpack factor that can be easily estimated through daily 

forecasts are included in the final models.  More complicated variables that would require 

the user to estimate more than one meteorological or snowpack factor were discarded 

only when a more straight-forward variable that had comparable predictive success was 

available.  For example, suppose the new snow density variables (HND0, HND0,-1, 

HND0,-1,-2, HND0,-1,-2,-3) and the new snow water equivalent variables (HNW0, HNW0,-1, 

HNW0,-1,-2, HNW0,-1,-2,-3) were found to be good new snow wet avalanche predictors.  The 

new snow density variables require the user to estimate the new snowfall and new snow 

water equivalent totals for each prediction day, while the new snow water equivalent 

variables only require the use to estimate the SWE for each prediction day.  If the new 

snow water equivalent variables had comparable predictive success they would be chosen 

in favor of the new snow density variables because they are easier for the user to 

calculate. 

 
Correlation Testing  
 

Before the model selection process could begin, correlation tests were performed 

on all old snow and new snow significant variables.  The purpose of the correlation 

testing was to identify those variables that are too correlated with one another to be 

included in the same model. Strongly correlated variables essentially explain the same 

changes in the response and contribute a limited amount of unique information to the 

model. The result of having strongly correlated variables in the same model is a decrease 

in the overall strength of its predictive capability because the correlated variables increase 

the complexity of the model while contributing little predictive power (Neter et al., 
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1996).  The Pearson product moment correlation coefficient (r) was used to measure the 

degree of linear relationship, or correlation, between two variables.  The correlation 

coefficient can have a value between –1 and 1.  Negative values indicate that the two 

variables being tested are inversely related with one another, while positive values 

indicate that the two variables are directly related with one another (Neter et al., 1996). 

Two variables with a Pearson coefficient of 1 or –1 are perfectly correlated with one 

another and can be considered identical predictor variables.  Any two variables with a 

Pearson product correlation coefficient between 0.5 to 1.0 and  –0.5 to -1.0 was noted and 

caution was used during the final model building process to prevent highly correlated 

variables from being in the same model.  Tables 9 and 10 in the discussion section 

provide the old snow and new snow correlation test results. 

 
Variable Selection Criteria   
 

Old snow and new snow variables that were selected for the final model building 

phase were chosen based on their p-values, odds ratios, percent concordant pairs and the 

ease in which the variable can be calculated and/or estimated by the model user.  P-values 

less than or equal to 0.05 indicate that the variable’s coefficient is significantly different 

than zero at the α = 0.05 significance level.  The odds ratio value is an indicator of the 

variable’s effect on the model results.  For example, a variable with an odds ratio of 2 

means that the odds of the prediction model calculating a wet avalanche outcome 

(binomial response equal to 1) is two-fold for each incremental increase in the variable’s 

value.  The odds ratio can take on any value, positive or negative.  As it approaches 1.0 

the variable will have a decreasing effect on the model results (Minitab, Inc., 2000). The 
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percent concordant pairs value is a measure of association between the observed response 

and the predicted probabilities.  If, for example, the model predicts a greater probability 

for wet avalanche conditions (predicted probability) on a wet avalanche day (observed 

response) the model has given an accurate or ‘concordant’ response.  If, however, the 

model predicts a higher probability for wet avalanche conditions on an observed           

no-wet-avalanche day the model has given an inaccurate or ‘discordant’ response.  The 

greater percent concordant pairs the greater the model’s predictive accuracy (Minitab, 

Inc., 2000).   
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RESULTS 

 
 
 

The following results describe the Bridger Bowl datasets and variables used in 

this study prior to statistical treatment.  Hypothesis testing and model selection outcomes 

are presented in the discussion section.  The original Bridger Bowl dataset containing all 

days in March from 1968-2001 (excluding 1996) has a total of 1,046 days, 72 of which 

have recorded wet avalanches and are therefore labeled as ‘wet avalanche days’ (Table 

2).  The remaining 974 days may have had recorded dry avalanches, or no avalanches at 

all, but because no wet avalanches were recorded, these days are labeled as either ‘no-

wet-avalanche days’ or ‘days with no wet avalanches’.  The original dataset was divided 

into a ‘new snow dataset’ and an ‘old snow dataset’ (Table 2).  The ‘new snow dataset’ is 

made up of 704 ‘new snow’ days, where a ‘new snow’ day has measured newly fallen 

snow that is less than or equal to 48 hours in age. Thirty-nine days in the new snow 

dataset had recorded wet avalanche occurrences and 665 days were days with no wet 

avalanches.  The ‘old snow dataset’ contains 342 ‘old snow’ days, where an ‘old snow’ 

day has measured newly fallen snow that is more than 48 hours old.  This dataset has 33 

wet avalanche days and 309 day with no wet avalanches.  Although there are nearly twice 

as many days in the new snow dataset than the old snow dataset, the number of wet 

avalanche days differs by just six days between the two datasets. The new snow dataset 

and old snow dataset were used in the hypothesis testing phase of the study (results 

presented in discussion section).  For model selection and testing purposes, the new and 
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old snow datasets were divided into ‘training’ and ‘testing’ datasets (Table 2).  A random 

number generator was used to select 80% of the new snow dataset to create the new snow 

training dataset.  The remaining 20% was used to create the new snow testing dataset.  

The same procedure was employed to create the old snow training and testing datasets 

(results presented in the discussion section).   

 
Table 2.  Dataset Descriptive Statistics 

 
 

Basic descriptive statistics for all 68 variables used in the analysis are given in 

Tables 3 (Original Dataset), 4 (Old Snow Dataset) and 5 (New Snow Dataset).  For each 

table, ‘N’ provides the total number of observations for each variable in the dataset.  ‘N’ 

may vary due to missing data in the records or recordation errors that were deleted from 

the dataset.  The minimum, maximum, mean and standard deviation for each variable are 

also provided in tables.  See Appendix A for a list of variable definitions.  

 
 
 
 
 
 
 

Dataset Total Days 
Total Wet  
Avalanche Days 

Total No-Wet-
Avalanche Days 

Original Dataset 1,046 72 974 

New Snow Dataset 704 39 665 

    Training Dataset 562 28 534 

     Testing Dataset 142 11 131 

Old Snow Dataset 342 33 309 

     Training Dataset 273 27 246 

     Testing Dataset 69 6 63 
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Table 3.  Original Dataset – Predictor Variable Descriptive Statistics 

Variable N Minimum Mean Maximum St. Dev. 

Day of Year 1046        57 75      91.0 9.2 
MaxT0°C 1038 -20.0 1.8      20.0      5.8 
MaxT-1°C 1039 -20.0 1.7       19.4      5.8 
MaxT-2°C 1040 -20.0 1.7       19.4      5.8 
MaxT-3°C 1032           -20.0 1.7       19.4      5.8 
AvgMaxT0,-1°C 1032 -18.6 1.7       16.2      5.3 
AvgMaxT0,-1,-2°C 1026 -15.2      1.7       15.5      5.0 
AvgMaxT0,-1,-2,-3°C 1021 -13.4      1.7       14.9      4.7 
MinT0°C 1037 -26.1       -7.8      5.6     5.1 
MinT-1°C 1038      -26.1       -7.9      5.6     5.2 
MinT-2°C 1038      -26.1       -8.0      5.6     5.2 
MinT-3°C 1039 -26.1       -8.0      5.6     5.1 
AvgMinT0,-1°C 1030 -25.3   -7.9      3.9     4.7 
AvgMinT0,-1,-2°C 1023 -24.6       -7.9      2.2     4.3 
AvgMinT0,-1,-2,-3°C 1017 -23.7       -8.0      1.8     4.1 
AvgT0°C 1037 -22.8      -3.0      10.6      5.1 
AvgT-1°C 1038 -22.8      -3.1      10.6      5.1 
AvgT-2°C 1038 -22.8      -3.2      10.6      5.1 
AvgT-3°C 1039   -22.8      -3.2   10.6      5.1 
AvgAvgT0,-1°C 1030 -21.1       -3.1      9.0      4.7 
AvgAvgT0,-1,-2°C 1023   -19.9       -3.1      7.6      4.4 
AvgAvgT0,-1,-2,-3°C 1017 -18.3       -3.1      7.2      4.2 
DDMaxT0°C 1038   -20.0      1.8       20.0      5.8 
DDMaxT0,-1°C 1032   -37.2      3.4      32.3      10.6 
DDMaxT0-1,-2°C 1026 -45.6      5.0       46.6      15.0 
DDMaxT0,-1,-2,-3°C 1021   -53.4      6.6       59.4      18.9 
DDAvgT0°C 1037    -22.8      -3.0      10.6      5.1 
DDAvgT0,-1°C 1030 -42.3      -6.2      17.9     9.4 
DDAvgT0,-1,-2°C 1023 -59.7      -9.4      22.8     13.2 
DDAvgT0,-1-2,-3°C 1017     -73.1      -12.6     29.0     16.7 
MaxT0-MaxT-1°C 1032 -17.3      0.1       22.2      4.8 
MaxT0-MaxT-2°C 1031 -18.3      0.2       17.8      6.2 
MaxT0-MaxT-3°C 1032 -22.2      0.2       18.9      6.8 
MinT0-MinT-1°C 1030 -16.8      0.1       17.7      4.4 
MinT0-MinT-2°C 1029   -20.2      0.2       21.1      5.7 
MinT0-MinT-3°C 1030     -23.9      0.2       23.3      6.1 
AvgT0-AvgT-1°C 1030     -12.9      0.1       12.2      3.9 
AvgT0-AvgT-2°C 1029 -19.0      0.2       18.6      5.4 
AvgT0-AvgT-3°C 1030 -23.1 0.2       21.1      6.0 
MaxT0-MinT0°C 1038 0.0      9.6       27.7       4.2 
MaxT-1-MinT-1°C 1039 0.0      9.6       27.7       4.2 
MaxT-2-MinT-2°C 1039 0.0      9.6       27.7       4.2 
MaxT-3-MinT-3°C 1030 0.5      9.6       27.7       4.1 
MaxT-1-MinT0°C 1031   -4.4      9.5       28.8       5.3 
MaxT-2-MinT-1°C 1032 -4.4      9.6       28.8       5.3 
MaxT-3-MinT-2°C 1033 -4.4      9.6       28.8       5.4 
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Variable N Minimum Mean Maximum St. Dev. 

HS0-HS-1 cm 1040 -38.1      0.8       91.4      8.8 
HS0-HS-2 cm 1040 -45.7      1.7       91.4      12.6 
HS0-HS-3 cm 1040 -45.7      2.6       91.4      15.0 
Stl0,-1 cm 1037 -43.1      -4.0      28.0      4.8 
Stl0,-1,-2 cm 1033 -55.8      -7.9      27.9     7.4 
Stl0,-1,-2,-3 cm 1029   -76.1      -11.8     22.9     9.6 
HNA0 days 1046 0.0     1.5      16.0      2.4 
HNA-1 days 1046 0.0     1.6      16.0      2.4 
HNA-2 days 1046 0.0     1.6      16.0      2.4 
HNA-3 days 1046 0.0     1.6      16.0      2.4 
HN0 cm 1042 0.0     4.8       109.2       8.6 
HN0,-1 cm 1038 0.0     9.7      116.8       13.1 
HN0,-1,-2 cm 1034 0.0     14.6      124.4       16.7 
HN0,-1,-2,-3 cm 1030    0.0     19.4      132.0       19.9 
HNW0 cm 1030 0.0     0.4      8.8      0.7 
HNW0,-1 cm 1021 0.0     0.7      9.1      1.0 
HNW0,-1,-2 cm 1015   0.0     1.1      9.3      1.3 
HNW0,-1,-2,-3 cm 1010   0.0     1.5      10.2      1.5 
HND0 kg/m3 1026 0.0     36.8        268.4        49.2 
HND0,-1 kg/m3 1013 0.0     52.3       266.7        51.0 
HND0,-1,-2 kg/m3 1003 0.0     62.0       266.7        50.0 
HND0,-1,-2,-3 kg/m3 994 0.0     68.1       266.7        47.9 

 
 
Table 4.  Old Snow Dataset – Predictor Variable Descriptive Statistics 

Variable N Minimum Mean Maximum St. Dev. 

Day of Year 342 57 73 91.0 9.1 
MaxT0°C 337 -15.0 5.5 20.0 5.4 
MaxT-1°C 338           -20.0 3.7 17.2 6.0 
MaxT-2°C 341 -20.0 2.4 17.2 6.3 
MaxT-3°C 340 -17.2 2.2 15.6 6.1 
AvgMaxT0,-1°C 334 -13.9 4.6 16.2 5.4 
AvgMaxT0,-1,-2°C 333 -15.0 3.8 15.5 5.2 
AvgMaxT0,-1,-2,-3°C 331 -13.2 3.4 14.9 5.0 
MinT0°C 337 -23.3 -5.4 5.6 4.9 
MinT-1°C 338 -26.1 -7.1 3.3 5.5 
MinT-2°C 340 -26.1 -8.1 3.3 5.4 
MinT-3°C 340 -26.1 -7.9 2.2 5.4 
AvgMinT0,-1°C 334 -24.2 -6.3 3.9 4.9 
AvgMinT0,-1,-2°C 332 -23.4 -7.0 2.2 4.7 
AvgMinT0,-1,-2,-3°C 330 -22.1 -7.2 1.8 4.5 
AvgT0°C 337 -19.2 0.0 10.6 4.8 
AvgT-1°C 338 -22.8 -1.7 8.4 5.4 
AvgT-2°C 340 -22.8 -2.9 8.4 5.5 
AvgT-3°C 340 -20.9 -2.9 7.8 5.3 
AvgAvgT0,-1°C 334 -19.1 -0.9 9.0 4.9 

Table 3.  Continued 
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Variable N Minimum Mean Maximum St. Dev. 

AvgAvgT0,-1,-2°C 332 -19.2 -1.6 7.6 4.8 
AvgAvgT0,-1,-2,-3°C 330 -17.7 -1.9 7.2 4.6 
DDMaxT0°C 337 -15.0 5.5 20.0 5.5 
DDMaxT0,-1°C 334 -27.8 9.1 32.3 10.7 
DDMaxT0-1,-2°C 333 -45.0 11.4 46.6 15.7 
DDMaxT0,-1,-2,-3°C 331 -52.8 13.5 59.4 19.9 
DDAvgT0°C 337 -19.2 0.0 10.6 4.8 
DDAvgT0,-1°C 334 -38.1 -1.7 17.9 9.7 
DDAvgT0,-1,-2°C 332 -57.6 -4.7 22.8 14.3 
DDAvgT0,-1-2,-3°C 330 -70.6 -7.6 29.0 183 
MaxT0-MaxT-1°C 334 -16.7 1.9 22.2 4.3 
MaxT0-MaxT-2°C 336 -13.9 3.1 17.8 5.7 
MaxT0-MaxT-3°C 335 -14.6 3.4 18.9 6.4 
MinT0-MinT-1°C 334 -11.2 1.7 17.7 3.8 
MinT0-MinT-2°C 335 -10.6 2.7 21.1 4.9 
MinT0-MinT-3°C 335 -10.6 2.5 23.3 5.5 
AvgT0-AvgT-1°C 334 -9.2 1.8 12.2 3.3 
AvgT0-AvgT-2°C 335 -10.9 3.0 18.6 4.6 
AvgT0-AvgT-3°C 335 -11.4 3.0 21.1 5.3 
MaxT0-MinT0°C 337 1.1 10.9 27.7 4.0 
MaxT-1-MinT-1°C 338 1.1 10.8 27.7 4.0 
MaxT-2-MinT-2°C 340 1.1 10.5 25.0 4.3 
MaxT-3-MinT-3°C 340 1.1 10.1 25.0 4.1 
MaxT-1-MinT0°C 334 -1.1 9.0 23.4 4.9 
MaxT-2-MinT-1°C 337 -2.2 9.5 24.6 5.1 
MaxT-3-MinT-2°C 338 -1.7 10.3 24.6 5.1 
HS0-HS-1 cm 340 -38.1 -3.4 2.6 3.9 
HS0-HS-2 cm 340 -38.1 -6.6 2.6 5.7 
HS0-HS-3 cm 340 -35.6 -7.3 27.9 8.2 
Stl0,-1 cm 340 -38.1 -3.4 2.6 3.9 
Stl0,-1,-2 cm 340 -38.1 -6.9 2.6 6.0 
Stl0,-1,-2,-3 cm 340 -50.8 -10.9 7.7 8.1 
HNA0 days 342 2.0 4.2 16.0 2.6 
HNA-1 days 342 1.0 3.2 15.0 2.6 
HNA-2 days 342 0.0 2.2 14.0 2.6 
HNA-3 days 342 0.0 2.0 13.0 2.5 
HN0 cm 342 0.0 0.0 0.0 0.0 
HN0,-1 cm 342 0.0 0.0 0.0 0.0 
HN0,-1,-2 cm 342 0.0 3.1 66.0 6.7 
HN0,-1,-2,-3 cm 341 0.0 6.9 66.0 10.1 
HNW0 cm 342 0.0 0.0 0.0 0.0 
HNW0,-1 cm 342 0.0 0.0 0.0 0.0 
HNW0,-1,-2 cm 337 0.0 0.2 3.8 0.6 
HNW0,-1,-2,-3 cm 334 0.0 0.5 3.8 0.8 
HND0 kg/m3 342 0.0     0.0 0.0 0.0 
HND0,-1 kg/m3 342 0.0     0.0 0.0 0.0 
HND0,-1,-2 kg/m3 337 0.0     24.7 266.7 45.8 
HND0,-1,-2,-3 kg/m3 333 0.0     42.3 266.7 54.1 

Table 4.  Continued 
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Table 5.  New Snow Dataset – Predictor Variable Descriptive Statistics 

Variable N Minimum Mean Maximum St. Dev. 

Day of Year 704 57 76 91.0 9.2 
MaxT0°C 701 -20.0 0.0 17.2 5.1 
MaxT-1°C 701 -17.2 0.7 19.4 5.5 
MaxT-2°C 698 -15.6 1.3 19.4 5.6 
MaxT-3°C 700 -20.0 1.4 19.4 5.7 
AvgMaxT0,-1°C 698 -18.6 0.4 15.0 4.8 
AvgMaxT0,-1,-2°C 693 -15.2 0.7 14.8 4.5 
AvgMaxT0,-1,-2,-3°C 690 -13.4 0.8 14.2 4.4 
MinT0°C 700 -26.1 -9.0 2.2 4.8 
MinT-1°C 700 -26.1 -8.3 5.6 5.0 
MinT-2°C 698 -24.4 -7.9 5.6 5.0 
MinT-3°C 699 -25.6 -8.0 5.6 5.0 
AvgMinT0,-1°C 696 -25.3 -8.7 1.7 4.4 
AvgMinT0,-1,-2°C 691 -24.6 -8.4 1.8 4.1 
AvgMinT0,-1,-2,-3°C 687 -23.7 -8.3 1.4 3.8 
AvgT0°C 700 -22.8 -4.5 7.8 4.5 
AvgT-1°C 700 -20.9 -3.8 10.6 4.8 
AvgT-2°C 698 -20.0 -3.3 10.6 4.9 
AvgT-3°C 699 -22.8 -3.3 10.6 5.0 
AvgAvgT0,-1°C 696 -21.1 -4.2 6.0 4.2 
AvgAvgT0,-1,-2°C 691 -19.9 -3.9 5.3 4.0 
AvgAvgT0,-1,-2,-3°C 687 -18.3 -3.7 5.1 3.8 
DDMaxT0°C 701 -20.0 0.0 17.2 5.1 
DDMaxT0,-1°C 698 -37.2 0.7 30.0 9.5 
DDMaxT0-1,-2°C 693 -45.6 2.0 44.4 13.6 
DDMaxT0,-1,-2,-3°C 690 -53.4 3.3 56.6 17.4 
DDAvgT0°C 700 -22.8 -4.5 7.8 4.5 
DDAvgT0,-1°C 696 -42.3 -8.3 11.9 8.5 
DDAvgT0,-1,-2°C 691 -59.7 -11.6 15.9 12.1 
DDAvgT0,-1-2,-3°C 687 -73.1 -15.0 20.4 15.3 
MaxT0-MaxT-1°C 698 -17.3 -0.7 13.3 4.8 
MaxT0-MaxT-2°C 695 -18.3 -1.3 16.7 5.9 
MaxT0-MaxT-3°C 697 -22.2 -1.4 16.8 6.5 
MinT0-MinT-1°C 696 -16.8 -0.7 15.5 4.4 
MinT0-MinT-2°C 694 -20.2 -1.1 19.5 5.7 
MinT0-MinT-3°C 695 -23.9 -1.0 21.7 6.1 
AvgT0-AvgT-1°C 696 -12.9 -0.7 10.9 4.0 
AvgT0-AvgT-2°C 694 -19.0 -1.2 16.2 5.2 
AvgT0-AvgT-3°C 695 -23.1 -1.2 18.5 5.8 
MaxT0-MinT0°C 701 0.0 9.0 25.0 4.2 
MaxT-1-MinT-1°C 701 0.0 9.0 25.0 4.1 
MaxT-2-MinT-2°C 699 0.0 9.2 27.7 4.1 
MaxT-3-MinT-3°C 699 0.5 9.4 27.7 4.1 
MaxT-1-MinT0°C 697 -4.4 9.7 28.8 5.5 
MaxT-2-MinT-1°C 695 -4.4 9.6 28.8 5.5 
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Variable N Minimum Mean Maximum St. Dev. 

MaxT-3-MinT-2°C 695 -4.4 9.3 28.8 5.4 
HS0-HS-1 cm 700 -33.1 2.9 91.4 9.8 
HS0-HS-2 cm 700 -45.7 5.7 91.4 13.0 
HS0-HS-3 cm 700 -45.7 7.4 91.4 15.2 
Stl0,-1 cm 697 -43.1 -4.3 28.0 5.2 
Stl0,-1,-2 cm 693 -55.8 -8.4 27.9 7.9 
Stl0,-1,-2,-3 cm 689 -76.1 -12.3 22.9 10.2 
HNA0 days 704 0.0 0.3 1.0 0.4 
HNA-1 days 704 0.0 0.8 16.0 1.9 
HNA-2 days 704 0.0 1.3 16.0 2.3 
HNA-3 days 704 0.0 1.4 16.0 2.4 
HN0 cm 700 0.0 7.2 109.2 9.7 
HN0,-1 cm 696 0.0 14.4 116.8 13.7 
HN0,-1,-2 cm 692 0.0 20.2 124.4 17.3 
HN0,-1,-2,-3 cm 689 0.0 25.5 132.0 20.6 
HNW0 cm 688 0.0 0.5 8.8 0.8 
HNW0,-1 cm 679 0.0 1.1 9.1 1.1 
HNW0,-1,-2 cm 678 0.0 1.5 9.3 1.3 
HNW0,-1,-2,-3 cm 676 0.0 1.9 10.2 1.5 
HND0 kg/m3 684 0.0 55.3 268.4 51.2 
HND0,-1 kg/m3 671 0.0 79.0 266.7 42.6 
HND0,-1,-2 kg/m3 666 0.0 80.9 266.7 40.5 
HND0,-1,-2,-3 kg/m3 661 0.0 81.1 266.7 38.4 

 
 

In order to better understand why the statistical approach described in the methods 

section was chosen, the distribution of several variables from the original dataset prior to 

transformation is provided in Figures 4 through 8.  Each ‘Descriptive Statistics’ figure 

provides a list of descriptive statistics on the right and several descriptive graphs to the 

left including a histogram with the variable’s normality curve overlaid to assess its 

normality; a boxplot that summarizes information about the shape, dispersion and center 

of the variable; a 95% confidence interval for the mean (Mu or µ); and a 95% confidence 

interval for the variable’s median.   See Appendix A for the descriptive statistics for all 

68 variables in the original dataset (“Descriptive Statistics”). 

Table 5.  Continued 
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The following explanation refers to Figure 4, but is applicable to Figures 5 

through 8 as well as the remaining variables in Appendix A.  Starting with the statistics 

listed on the right hand side (Fig. 4), the ‘Anderson-Darling Normality Test’ is 

commonly used to test a variable’s distribution for normality. A-squared refers to the 

Anderson Darling statistic, which in this case, describes how well the data fits a normal 

distribution.  The smaller the A-squared value, the more normally distributed the data are 

(Minitab, Inc., 2000).  A p-value less than or equal to 0.05 indicates there is sufficient 

evidence that the data are not normally distributed and a p-value greater than 0.05 

indicates that evidence exists for the normal distribution of the data.  When all of the 

observations in the ‘MaxT0’ distribution are summed and divided by the total number of 

observations (N), the result is the mean. The standard deviation is one way to measure 

how spread out, or scattered, the data are.  Squaring the standard deviation will provide 

the variance of the distribution.  If the distribution of the data are not symmetric, the 

skewness value will be less than or greater than zero, depending on whether the data are 

skewed to the left (-) or to the right (+).  The distribution of the prediction day maximum 

temperature (MaxT0) from the original dataset appears to be almost normally distributed, 

but is slightly skewed to the left, therefore the skewness value is just below zero. The 

Kurtosis value describes how much the distribution’s peakedness departs from that of a 

normal distribution.  Distributions with sharper peaks, thinner shoulders and fatter tails 

than normally distributed data generally have positive Kurtosis values.  Distributions with 

flatter peaks, fatter shoulders and thinner tails than normally distributed data, are 

generally given a negative Kurtosis value (MiniTab Inc., 2000).  Minimum and 
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maximum values are given next.  When the data are plotted from its minimum value to its 

maximum value, the first 25% of the data are less than or equal to the 1st quartile value.  

The first 50% of the data are less than or equal to the 2nd quartile, or median, which is the 

value in the very center of the distribution.  The first 75% of the data are less than or 

equal to the 3rd quartile.  The remaining 25% of the data are greater than or equal to the 

3rd quartile value and less than or equal to the maximum value.  The 95% confidence 

interval for Mu (µ or mean) is bounded by the upper and lower values provided.  This can 

be interpreted as ‘we can be 95% confident that the true Mu (µ or mean) is captured 

within the lower and upper bounds of this interval’. The 95% confidence intervals for 

sigma (standard deviation) and the median are interpreted in the same manner.  The first 

graph to the left of the column statistics is a histogram of the prediction day maximum 

temperature variable (MaxT0) (Fig. 4) with its normality curve overlaid.  If the data were 

normally distributed, all of the shaded columns would fit within the normality curve.  The 

height of each column shows the relative frequency of each value on the X-axis.  The box 

plot directly below the histogram uses the same scale and represents the same distribution 

in a different format.  Here, the box with the ‘whiskers’ extending left and right 

represents the inner quartile range, or inner 50%, of the ‘MaxT0’ distribution.  The 

‘whiskers’ represent the outer 50% of the ‘MaxT0’ distribution.  The left edge of the box 

is the 1st quartile value and the right edge of the box is the 3rd quartile value.  Several 

outliers exist and are noted by the asterisks (*) beyond the whiskers.  The mean and 

median of the ‘MaxT0’ distribution are captured within the inner quartile and their 95% 

confidence intervals are plotted in the diagonally-lined box plots.   The true ‘MaxT0’ 
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mean lies within the diagonally-line 95% confidence interval for Mu box and the best 

estimate for the mean lies on the box’s center line.  The true ‘MaxT0’ median lies within 

the diagonally-lined 95% confidence interval for median box and its best estimate is 

marked by the box’s center line.  Both plots share the same scale, 1.00C to 2.00C.  Since 

‘MaxT0’ is only minimally skewed, the 95% confidence interval boxes for the mean and 

median are fairly in-line with one another. 

 

Figure 4.  Original Dataset – Prediction Day Maximum Temperature Descriptive 
Statistics 
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The distribution of the ‘day’ of year variable is non-normal and this is evident by 

the gray bars extending beyond the black normal distribution curve (Fig. 5).  In some 

cases when a wet avalanche day occurred on March 1st (day 60), days 57-59 were needed 

to calculate certain ‘pre-day’ variables, but because this did not occur frequently the 

number of days plotted in the histogram drop off quickly for days prior to day 60.  The 

number of days greater than day 90 (March 31st) drop off quickly as well because March 

31st becomes day 91 in a leap year.  The lack of asterisks (*) in the box plot below the 

histogram indicate that no outliers exist for this variable.  The relative symmetry of this 

distribution is evident in the way the 95% confidence interval boxes for the mean and 

median line up.   

Figure 5.  Original Dataset - ‘Day’ of Year Descriptive Statistics 
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 The prediction day minimum temperature (MinT0) distribution from the original 

dataset is more skewed, this time to the right (Fig. 6).  This right-sided shift of the data 

have created a longer left side tail with outliers marked on the box plot below.  The 

increased skewness has increased the range for the mean and median 95% confidence 

intervals and has reduced the overlapping of the boxes. 

 

Figure 6.  Original Dataset – Prediction Day Minimum Temperature Descriptive 
Statistics 
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The distribution for the overnight temperature range prior to the prediction day 

(MaxT-1-MinT0) (Fig. 7) is nearly opposite of the prediction day minimum temperature 

distribution described above (Fig. 6). This data are skewed to the left of its normal 

distribution curve and has a long right hand tail with outliers noted in the right hand side 

of the box plot below.  As before, the mean 95% confidence interval box is skewed in the 

direction of the outliers while the median confidence interval box is in the direction of the 

most frequent observations. 

 

Figure 7.  Original Dataset – Prediction Day Overnight Temperature Range Descriptive 
Statistics 
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The distribution for the cumulative new snow water equivalent (SWE) over the 

three days leading up to and including the prediction day (HNW0,-1,-2,-3) is the most highly 

skewed of the examples provided above (Fig. 8).  This is evident in the shortened left 

whisker and elongated right whisker with far reaching outliers that extend beyond in the 

box plot below the histogram.  The skewness has also pushed the 95% confidence 

interval boxes for the mean and median to opposite ends of the range. 

 

Figure 8.  Original Dataset – Three Day Cumulative New SWE Descriptive Statistic 
 
 
 Figures 4 through 8 illustrate that the data in the original dataset are not always 

normally distributed, and statistical tests of wet avalanche occurrence in March cannot be 

made with the data in its current state because wet avalanche days are not distinguished 

from days with no wet avalanches. 
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 Figures 9 and 10 show the distribution of the prediction day maximum 

temperature (Fig. 9) and the distribution of the prediction day minimum temperature  

(Fig. 10) from the original dataset, this time as they relate to observed wet avalanche days 

in the dataset. The light bars in Figure 9 represent the prediction day maximum 

temperature frequency (this is the same distribution shown in Figure 4, but with the upper 

and lower tails removed).  The black bars represent the number of wet avalanches that 

occurred at a given temperature.  For example, there were approximately 90 days with a 

maximum temperature of 1°C recorded in the original dataset.  At this same temperature, 

roughly 32 wet avalanches released and were recorded. The black triangles represent the 

proportion, given as percentages, of days at a given temperature that had recorded wet 

avalanche occurrence.   Using 1°C maximum temperature as an example, there were 90 

days in the dataset with this maximum temperature, six of those 90 days produced a total 

of 32 wet avalanches.  The six wet avalanche days make up 7% of the 90 days with a 

maximum temperature of 1°C.  Since 1968, wet avalanches have been recorded on days 

with a maximum temperature ranging from -8°C to 15°C.  The highest frequencies tend 

to occur between -1°C and 12°C, and the proportion of wet avalanche days tend to 

increase as the maximum temperature increases, but the temperature thresholds are not 

clear and the proportion pattern is not strong. 
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Prediction Day Maximum Temperature and Wet Avalanche Days Histogram
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Figure 9.  Original Dataset – Prediction Day Maximum Temperature and Wet Avalanche 
Day Distribution 
 
 
 The interpretation for the prediction day minimum temperature and wet avalanche 

day distributions (Fig. 10) is the same as that described for Figure 9.  In the past, wet 

avalanches have been recorded on days with minimum temperatures ranging from -20°C 

to 3°C.   Most of these avalanches released when minimum temperatures were between   

-9°C and 3°C.  The proportion of wet avalanche days tends to rise sharply as the 

minimum temperature increases from -10°C to -9°C and drop off sharply from 3°C to 

4°C.   
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Prediction Day Minimum Temperature and Wet Avalanche Days Histogram 
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Figure 10.  Original Dataset – Prediction Day Minimum Temperature and Wet Avalanche 
Day Distribution. 
 
 
 Plotting the wet avalanche days separately in Figures 9 and 10 provides a great 

deal more information about the prediction day maximum and minimum variables than 

the simple plots given in the “Descriptive Statistics” figures above.  However, the ranges 

for both temperature variables are fairly wide and it is impossible to determine for certain 

if and how new snow wet avalanche distributions may vary from old snow wet avalanche 

distributions.  To see more clearly the patterns and associations for each variable, more 

statistical tests are needed.  These tests were described in the methods section and results 

are presented in the discussion section.
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DISCUSSION 
 

 
Data Analysis – Hypothesis Testing 

 
 
Old Snow Dataset Hypothesis Testing Results 
 

The results of the appropriate means (2-Sample T-Test) or medians (Mann-

Whitney) tests for the significant old snow variables determined for the first hypothesis 

question (H0: µ0old = µ1old vs. H1: µ0old ≠ µ1old) are provided in Table 6.  The means and 

medians are in their original non-transformed state for comparison purposes.  See 

Appendix A for variable definitions (“Definitions”) and Appendix B for means and 

medians tests for all of the old snow variables (“Old Snow Hypothesis Testing Results”). 

 
Table 6.  Old Snow Dataset – Hypothesis Testing Results, Significant Variables Only 

Variable Test 

Wet 
Avalanche 
Day 
Mean or 
Median 

No-Wet-
Avalanche 
Day 
Mean or 
Median 

Wet 
Avalanche 
Day – No-
Wet-
Avalanche 
Day 

P-Value 

Day Mann-Whitney Day 78  Day 72 6 days 0.007 
MaxT0* 2-Sample T-Test 9.1°C 5.1°C 4.0°C 0.000 
MaxT-1 Mann-Whitney 7.2°C 3.3°C 3.9°C 0.001 
MaxT-2 Mann-Whitney 4.4°C 2.2°C 2.2°C 0.042 
AvgMaxT0,-1 Mann-Whitney 8.9°C 4.5°C 4.4°C 0.000 
AvgMaxT0,-1,-2* 2-Sample T-Test 6.8°C 3.5°C 3.3°C 0.000 
AvgMaxT0,-1,-2,-3 Mann-Whitney 6.8°C 3.0°C 3.8°C 0.001 
MinT0 Mann-Whitney -1.1°C -5.0°C 3.9°C 0.000 
MinT-1* 2-Sample T-Test -4.2°C -7.4°C 3.2°C 0.001 
MinT-2* 2-Sample T-Test -5.7°C -8.4°C 2.7°C 0.007 
AvgMinT0,-1* 2-Sample T-Test -3.5°C -6.6°C 3.1°C 0.000 
AvgMinT0,-1,-2* 2-Sample T-Test -4.2°C -7.2°C 3.0°C 0.000 
AvgMinT0,-1,-2,-3* 2-Sample T-Test -4.8°C -7.4°C 2.6°C 0.001 
AvgT0* 2-Sample T-Test 3.2°C -0.3°C 3.5°C 0.000 
AvgT-1* 2-Sample T-Test 1.3°C -2.0°C 4.3°C 0.000 
AvgT-2* 2-Sample T-Test -0.6°C -3.1°C 2.5°C 0.009 
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Variable Test 

Wet 
Avalanche 
Day 
Mean or 
Median 

No-Wet-
Avalanche 
Day 
Mean or 
Median 

Wet 
Avalanche 
Day – No-
Wet-
Avalanche 
Day 

P-Value 

AvgAvgT0,-1* 2-Sample T-Test 2.2°C -1.2°C 3.4°C 0.000 
AvgAvgT0,-1,-2* 2-Sample T-Test 1.3°C -1.9°C 3.2°C 0.000 
AvgAvgT0,-1,-2,-3* 2-Sample T-Test 0.6°C -2.2°C 2.8°C 0.000 
DDMaxT0* 2-Sample T-Test 9.1°C 5.1°C 4.0°C 0.000 
DDMaxT0,-1* 2-Sample T-Test 15.9°C 8.4°C 7.5°C 0.000 
DDMaxT0,-1,-2* 2-Sample T-Test 20.5°C 10.4°C 10.1°C 0.000 
DDMaxT0,-1,-2,-3* 2-Sample T-Test 23.8°C 12.4°C 11.4°C 0.001 
DDAvgT0* 2-Sample T-Test 3.2°C -0.3°C 3.5°C 0.000 
DDAvgT0,-1* 2-Sample T-Test 4.5°C -2.4°C 6.9°C 0.000 
DDAvgT0,-1,-2* 2-Sample T-Test 3.9°C -5.6°C 9.5°C 0.000 
DDAvgT0,-1,-2,-3* 2-Sample T-Test 2.4°C -8.7°C 11.1°C 0.000 
HS0-HS-1 Mann-Whitney -5.1cm -2.5cm -2.6cm 0.002 
HS0-HS-2 Mann-Whitney -10.2cm -5.1cm -5.1cm 0.000 
HS0-HS-3 Mann-Whitney -10.2cm -7.6cm -2.6cm 0.000 
Stl0,-1 Mann-Whitney -5.1cm -2.5cm -2.6cm 0.002 
Stl0,-1,-2 Mann-Whitney -10.2cm -5.1cm -5.1cm 0.000 
Stl0,-1,-2,-3 Mann-Whitney -15.2cm -7.9cm -7.3cm 0.000 

All 2-Sample T-Tests used pooled sample variance 
* Variable was transformed – see Appendix B for λ value 
 
 

Old Snow Temperature Variables  The ‘day’ of year variable is a proxy for 

available incoming radiation.  The difference between the old snow ‘day’ of year median 

for wet avalanche days and days with no wet avalanches (Table 6) is somewhat 

misleading.  A histogram of wet avalanche days and ‘day’ of year better illustrates the 

pattern of wet avalanche release (Fig. 11).  Wet avalanche occurrence tends to increase as 

the day of year increases.  The results agree with the a priori hypothesis that as the day of 

the year increases and moves closer to the summer solstice, the amount of energy 

available to melt snow and create wet avalanche conditions increases.  The slight drop in 

wet avalanche activity at the end of the month may reflect the fact that most of the 

Table 6.  Continued 
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unstable wet snow has already released and the remaining snowpack has become       

well-drained.  

 

Old Snow Wet Avalanche Day: 
'Day' of Year Distribution
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Figure 11.  Old Snow Dataset – Wet Avalanche Day ‘Day’ of Year Distribution  
 
 

Changes in the prediction day, one day prior, and two days prior maximum 

temperatures (MaxT0, MaxT-1, MaxT-2) are interesting in that there is a 3°C and 2°C 

daily increase in the maximum temperature leading up to a wet avalanche day where as 

the increase in temperature leading up to a day with no wet avalanches is only 

approximately 1°C and 2°C increase per day (Table 6).  The difference between the 

maximum temperatures leading up to a wet avalanche day and a day with no wet 

avalanches range from 2°C and 4°C.  One day prior, two days prior and three days prior 

average maximum temperatures (AvgMaxT0,-1, AvgMaxT0,-1,-2, AvgMaxT0,-1,-2,-3) for wet 

avalanche days are all well above 0°C and are at least 3°C warmer than the one day prior, 
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two days prior, and three days prior average maximum temperatures for                        

no-wet-avalanche days.   These changes in temperature agree with previous studies that 

describe temperature as a component of the radiation regime and an index of the energy 

available to melt snow (Armstrong, 1976; Kattelmann, et al., 1998).  Warmer 

temperatures and periods of prolonged heating (in this case, three days including the 

prediction day) increase the probability of deep wet snow instability (McClung and 

Schaerer, 1993).  A prolonged period of warming is especially important for wet snow 

instability in old snow (Table 6).  As snow densifies with age, permeability decreases, 

which in turn reduces the ability of liquid water to transmit through the snowpack 

(Colbeck, 1979).  This can result in the liquid water pooling above a dense layer, which 

can quickly lead to cohesionless wet snow. 

 Old snow prediction day, one day prior, and two days prior minimum temperature 

variables (MinT0, MinT-1, MinT-2) follow similar changes in temperature for wet 

avalanche days and no-wet-avalanche days, but wet avalanche days are approximately 

3°C to 4°C warmer each day and reach -1°C by the prediction day whereas                   

no-wet-avalanche prediction day minimum temperatures only reach –5°C on average 

(Table 6).  Average minimum temperature variables (AvgMinT0,-1, AvgMinT0,-1,-2, 

AvgMinT0,-1,-2,-3) have  similar temperature changes as well, increasing less than 1°C per 

day, but wet avalanche day temperatures are on average about 3°C warmer each day than 

days with no  wet avalanches.  The warmer minimum temperatures occurring on and 

leading up to wet avalanche days likely results from warm cloudy nights that minimize 

radiative cooling of the snowpack.  The loss of heat through cooling creates what Cline 
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(1997) and others have termed a ‘heat deficit’ in the snowpack.  Before snowmelt can 

begin on a given day, “any energy deficit from the previous night (resulting in either 

refreezing of meltwater, cooling of the snowpack, or both) must first be satisfied” (Cline, 

1997, p.44). Mild temperatures at night reduce the amount of energy needed to satisfy the 

‘heat deficit’ in the snowpack the following day before melting can take place.  Cloudy 

nights will capture longwave radiation emitted by the snowpack and transmit some of the 

radiation back into the snowpack.  Because snow is so opaque to the thermal infrared 

wavelength, radiation emitted by one grain is absorbed by the neighboring grain resulting 

in the warming of subsurface snow while only the very topmost grains will lose heat to 

space (Brandt and Warren, 1993).  Successive 24 hour periods with warm minimum 

temperatures is an important element to old snow wet avalanche conditions because it 

provides for a relatively warm snowpack temperature regime which requires only 

minimal amounts of heat to be consumed during the day to raise the temperature of the 

snow to 0°C which will create conditions for rapid melt and subsequent percolation of 

free water (Armstrong, 1976).   

Old snow average and averaged average temperature variables (AvgT0, AvgT-1, 

AvgT-2, AvgAvgT0,-1, AvgAvgT0,-1,-2, AvgAvgT0,-1,-2,-3) are nearly 0°C or above for each 

day leading up to and including the prediction day on wet avalanche days, but are below 

0°C for days with no wet avalanches (Table 6).  Warm average and averaged average 

temperatures ranging from –0.6°C to 3.2°C can result from a variety of conditions such 

as mild maximum temperatures and warm minimum temperatures, warm maximum and 

minimum temperatures, or a combination of the above.  Mild maximum temperatures and 
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warm minimum temperatures often form under cloudy conditions.  Under low cloud 

conditions, sunlight can penetrate through the clouds to warm the snow cover, but the 

longwave radiation emitted by the snow cover cannot escape through the clouds creating 

a ‘greenhouse effect’ (McClung and Schaerer, 1993).  Obled and Harder (1978) found 

that incoming global radiation can be two times as great for a surface with a low albedo 

to longwave radiation, such as snow, because of reflection and back scattering between 

the snow surface and clouds.  Warm average and averaged temperatures can also form 

under very warm maximum temperatures and very cool minimal temperatures indicating 

clear sky conditions and intense radiation during the day.  Average temperatures are not 

necessarily required to be above zero for wet snow conditions to be present.  Temperature 

is only a portion of the total energy input at the snow surface, which includes downward 

solar radiation, downward thermal infrared radiation, turbulent exchange of sensible and 

latent heat, and conduction of heat through the snow (Brandt and Warren, 1993).   

“Incident solar, shortwave, radiation penetrates to considerable depth in snow, 
whereas the cooling by emission of thermal infrared and longwave radiation to space 
only occurs at the very upper surface of the snowpack… Shortwave heating at depth with 
longwave cooling at the surface causes a temperature gradient to support a conductive 
heat flux upward toward the surface” (Brandt and Warren, 1993, p.99).  

 
Ambach and Howorka (1966) found that average temperature is proportional to 

the daily free water content of the snow cover.  It follows then, that as the average daily 

temperature increase, the daily mean free water content of the snowcover increases and 

the probability of wet avalanche conditions increase as well.  As before, successive 24 

hour periods with warm average temperatures will allow for a relatively warm snowpack 
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temperature regime that requires only minimal amounts of heat to be consumed during 

the day to raise the temperature of the snow to 0°C (Armstrong, 1976). 

 The degree day variables (DDMaxT0, DDMaxT0,-1, DDMaxT0,-1,-2,       

DDMaxT0,-1,-2,-3) are one way to describe how far the maximum temperature departed 

from 0°C during the day and each successive prior day describes how great the 

cumulative departure was from 0°C (Rango and Martinec, 1995).  The mean cumulative 

degree day value for wet avalanche days is nearly twice that of no-wet-avalanche days 

(Table 6).  This is supported by findings described by Rango and Martinec (1995) that 

degree days are directly proportional to snowmelt depth.  The degree day value increases 

as the snow becomes wet, and the decreasing albedo enhances the heat gain from the 

increasing solar radiation penetration, which in turn, increases the depth of snow melt.  

Successive 24 hour periods with increasing degree day values will enhance the snow melt 

process.  Older wet snow with higher density has a lower albedo and a higher liquid 

water content, so each degree day becomes more melt-efficient (Rango and Martinec, 

1995). 

 The degree day variables using average temperature (DDAvgT0, DDAvgT0,-1, 

DDAvgT0,-1,-2, DDAvgT0,-1,-2,-3) is a common alternative to using maximum temperature 

in the degree day calculations.  It describes how far the average temperature departed 

from 0°C and in the case of the one day prior and two days prior variables, the 

cumulative departure from 0°C (Rango and Martinec, 1995).  On average, the difference 

between wet avalanche day and no-wet-avalanche day degree day values range from 

3.5°C to 11.1°C (Table 6).  Wet avalanche day degree day variable means are all positive 
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on wet avalanche days and all negative for days with no wet avalanches.  The results 

agree with the findings in Rango and Martinec (1995) discussed above.   

 
Old Snow Snowpack Settlement Variables  The one day, two day and three day 

change in total snow depth (HS0-HS-1, HS0-HS-2, HS0-HS-3) for wet avalanche days is 

nearly twice as great as the change on days with no wet avalanches (Table 6).  On 

average, the total snow depth decreases by 5cm between the one day prior and the wet 

avalanche prediction day, and about 10cm between two days prior and the prediction day 

as well as three days prior and the prediction day.  The change in total snow depth 

variables take into account the addition of new snow, the overall settlement of the 

snowpack and other factors such as ablation that might contribute to the overall change in 

total snow depth.  The rapid decreases in HS0-HS-1, HS0-HS-2, and HS0-HS-3 that lead up 

to observed wet avalanches indicate snow settlement, which is a response to the presence 

of free water within the snowpack (Armstrong, 1976). 

 One day, two day and three day cumulative settlement variables (Stl0,-1, Stl0,-1, -2, 

Stl0,-1,-2,-3) are similar to the one day, two day and three day total snow depth change 

variables described above, except new snowfall amounts are subtracted so that the 

settlement variable represents only those factors that lead to the decrease in total 

snowpack depth such as melt, densification and ablation (see Appendix A for variable 

definitions).  Because old snow is defined as those days with no new recorded snowfall 

for at least 48 hours prior to the prediction day, this settlement variable is very similar to 

the total change in snow depth variable.  Settlement rates are two times as great on wet 

avalanche days than they are on days with no wet avalanches.  On average, the snowpack 



59 

settles 5cm one day prior to an observed wet avalanche day; 10cm over the two days 

prior to a wet avalanche day; and 15cm over the three days leading up to a wet avalanche 

day.  The snowpack responds to the presence of water by settling (Armstrong, 1976) and 

rapid settlement rates are associated with wet avalanche activity (McClung and Schaerer, 

1993).  In general, settlement increases densification and strength, however “local 

concentrations of water content can produce important decreases in strength.  Such 

decreases raise the chance of slip or glide, which adversely affect stability” (McClung 

and Schaerer, 1993).  As density increases, the snow albedo decreases and energy is 

absorbed more efficiently, which allows for wet unstable conditions to develop rapidly 

(McClung and Schaerer, 1993).   

 
Old Snow Dataset Summary Old snow wet avalanche conditions have 33 

significant predictor variables, 27 of which are temperature and snowpack settlement 

related and six variables are related to snowpack settlement (Table 6).  It was found that 

prediction day, one day prior and two day prior variables were significant for all 

temperature related variables and in many cases, the third day prior to the prediction day 

was significant as well.  All temperature variables showed relatively strong temperature 

increases that lead up to the wet avalanche day.  All maximum temperature related 

variables were well above 0°C, minimum temperature related variables were all within -

6°C of freezing and warmed near freezing on the prediction day; all average temperature 

related variables remained just slightly below or above 0°C over the prediction day, one 

day prior, two days prior and three days prior time period.  Total snow depth change 
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variables and total snow settlement variables were all similar and averaged 5cm to 10cm 

of snow depth change over the variables’ time period. 

 
New Snow Dataset Hypothesis Testing Results    
 

New snow hypothesis testing results show eleven fewer significant variables than 

the old snow hypothesis testing results (Table 6 and Table 7).  The results of the 

appropriate means (2-Sample T-Test) or medians (Mann-Whitney) tests for the 

significant new snow variables determined for the first hypothesis question are provided 

in Table 7.  The means and medians are in their original non-transformed state for 

comparison purposes.  See Appendix A for variable definitions (“Definitions”) and 

Appendix B for means and medians tests for all of the new snow variables (“New Snow 

Hypothesis Testing Results”). 

 
Table 7.  New Snow Dataset – Hypothesis Testing Results, Significant Variables Only 

Variable Test 

Wet 
Avalanche 
Day Mean 
or Median 

No-Wet-
Avalanche 
Day Mean 
or Median 

Wet 
Avalanche 
Day – No-
Wet-
Avalanche 
Day 

P-Value 

MinT0 Mann-Whitney -7.6°C -8.9°C 1.3°C 0.005 
AvgMinT0,-1* 2-Sample T-Test -7.3°C -8.8°C 1.5°C 0.036 
AvgT0* 2-Sample T-Test -2.9°C -4.6°C 1.7°C 0.005 
DDAvgT0* 2-Sample T-Test -2.9°C -4.6°C 1.7°C 0.005 
MaxT0-MaxT-2 2-Sample T-Test 0.5°C -1.4°C 1.9°C 0.049 
MinT0-MinT-1 Mann-Whitney 1.1°C -1.1°C 2.2°C 0.013 
MinT0-MinT-2 Mann-Whitney 1.1°C -1.1°C 2.2°C 0.005 
MinT0-MinT-3* Mann-Whitney 1.9°C -1.1°C 3.0°C 0.005 
AvgT0-AvgT-1 2-Sample T-Test 0.8°C -0.8°C 1.6°C 0.016 
AvgT0-AvgT-2 2-Sample T-Test 0.9°C -1.3°C 2.2°C 0.012 
AvgT0-AvgT-3 2-Sample T-Test 0.8°C -1.3°C 2.1°C 0.029 
MaxT-1-MinT0 2-Sample T-Test 7.3°C 9.9°C -2.6°C 0.001 
Stl0,-1 Mann-Whitney -5.1cm -2.6cm 2.5cm 0.008 
Stl0,-1,-2 Mann-Whitney -10.2cm -7.5cm 2.7cm 0.003 
Stl0,-1,-2,-3 Mann-Whitney -15.3cm -10.2cm 5.1cm 0.018 
HN0,-1,-2 Mann-Whitney 21.7cm 15.2cm 6.5cm 0.003 
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Variable Test 

Wet 
Avalanche 
Day Mean 
or Median 

No-Wet-
Avalanche 
Day Mean 
or Median 

Wet 
Avalanche 
Day – No-
Wet-
Avalanche 
Day 

P-Value 

HN0,-1,-2,-3 Mann-Whitney 32.4cm 20.3cm 12.1cm 0.002 
HNW0,-1 Mann-Whitney 1.3cm 0.8cm 0.5cm 0.010 
HNW0,-1,-2 Mann-Whitney 1.9cm 1.2cm 0.7cm 0.000 
HNW0,-1,-2,-3 Mann-Whitney 2.6cm 1.5cm 1.1cm 0.000 
HND0,-1 Mann-Whitney 93.1kg/m3 74.5 kg/m3 18.6kg/m3 0.023 
HND0,-1,-3 Mann-Whitney 93.1kg/m3 75.9kg/m3 17.2 kg/m3 0.029 

All 2-Sample T-Tests used pooled sample variance, except ‘AvgT0’ and ‘DDAvgT0’ used unpooled sample 
variance. 
* Variable was transformed – see Appendix B for λ value 
 

 
New Snow Temperature Variables  New snow prediction day minimum and one 

day average minimum temperatures (MinT0, AvgMinT0,-1) are significantly different for 

wet avalanche days and no-wet-avalanche days (Table 7).  Mean values for prediction 

day minimum (MinT0) and one day average temperatures (AvgMinT0,-1) are nearly the 

same on wet avalanche days at –7.6°C and –7.3°C respectively and were approximately 

1.5°C warmer than mean prediction minimum and one day average minimum 

temperatures on no-wet-avalanche days at –8.9°C and –8.8°C respectively.  The slightly 

warmer minimum temperatures on wet avalanche days help to reduce the amount of ‘heat 

deficit’ in the snowpack that needs to be compensated for the following day before 

melting can take place (Cline, 1997).   

 New snow prediction day average temperature (AvgT0) and the prediction day 

degree day variable (DDAvgT0) are on average 1.7°C warmer on wet avalanche days 

than for days with no wet avalanches, but both remain below 0°C (Table 7).  These mild 

average temperatures may form under cloudy conditions, or under sunny conditions that 

develop after a new snowfall event.  Cloudy conditions required for snowfall will 

Table 7.  Continued 
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reradiate some outgoing longwave radiation and keep minimum temperatures warm.  

Warm minimum temperatures and mild maximum temperatures explain the subfreezing 

average temperatures.  Rango and Martinec (1995, p.664) state “snowmelt by radiation 

can take place at temperatures slightly below 0°C and that there may be melt taking place 

on days when the average temperature is <0°C”.   Wet snow instability under new snow 

conditions is driven by the fine-grained snow crystals and lack of bonds within the new 

snow matrix.   The fine-grained snow crystals tend to retain liquid water more readily 

because of increased surface tension associated with the increased surface area within the 

new snow matrix.  As more liquid water is retained within a new snow layer, the bonds 

that do exist within the snow matrix are quickly melted resulting in cohesionless new 

snow. 

 The difference between the prediction day maximum temperature and the two 

days prior maximum temperature (MaxT0-MaxT-2) is approximately 2°C greater on wet 

avalanche days than it is on days with no wet avalanches (Table 7).  The MaxT0-MaxT-2 

for wet avalanche days is 0.5°C while the mean for no-wet-avalanche days is –1.4°C.  

The positive value occurring on wet avalanche days indicates that in the past, the 

prediction day maximum temperature is slightly warmer than two days prior maximum 

temperature.  The negative value for the days with no wet avalanches indicates that in the 

past the minimum temperature on the prediction day is 1.4°C cooler on average than the 

two days prior maximum temperature. 

 The differences between wet avalanche day and no-wet-avalanche day minimum 

temperature range variables (MinT0-MinT-1, MinT0-MinT-2, and MinT0-MinT-3) are 
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approximately 2°C and 3°C with all wet avalanche day temperature ranges positive and 

all ranges negative for days with no wet avalanches (Table 7).  Both wet avalanche day 

and no-wet-avalanche day temperature ranges change very little if at all.  The key 

difference is that the positive values for wet avalanche days indicate warming occurs 

prior to a wet avalanche day and there is a reduction in the amount of energy that is 

required to raise the snowpack temperature to 0°C before melt.  Days with no wet 

avalanches have negative temperature ranges indicating that the prediction day is cooler 

than each preceding day, which means that each day, more energy is required for the 

snow to be warmed to 0°C. 

 The average temperature range variables (AvgT0-AvgT-1, AvgT0-AvgT-2,   

AvgT0-AvgT-3) provide very similar results (Table 7).  Mean wet avalanche day ranges 

are roughly 2°C warmer than no-wet-avalanche day average temperature ranges.  Wet 

avalanche day means approach 1°C while no-wet-avalanche day means are centered 

around -1°C.  Wet avalanche day values are very stable suggesting that new snow wet 

avalanche conditions develop when mild conditions persist for several days.  Days with 

no wet avalanche conditions are also very stable, with the mean average temperature 

increasing slightly between the AvgT0-AvgT-1 and AvgT0-AvgT-2 variables. 

 The overnight temperature range prior to the prediction day (MaxT-1-MinT0) as 

expected, is less for the night before a wet avalanche day (Table 7).  The evening before a 

wet avalanche day cools approximately 7.3°C while the night before a day with no wet 

avalanches cools 9.9°C, a difference of 2.6°C. 
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 New Snow Snowpack Settlement Variables An increased one day, two day and 

three day settlement rate (Stl0,-1, Stl0,-1,-2, Stl0,-1,-2,-3) has occurred on wet avalanche days 

in the past (Table 7).  On average, about 5cm of settlement occurs each day leading up to 

the wet avalanche day and only 3cm or 4cm usually occurs prior to a day with no wet 

avalanches.  Settlement is one way in which the snowpack responds to the presence of 

free water (Armstrong, 1976) and is associated with increased wet avalanche activity 

(McClung and Schaerer, 1993).  Settlement generally increases snow densification and 

strength, but “local concentrations of water content can produce important decreases in 

strength.  Such decreases raise the chances of slip or glide, which adversely affect 

stability” (McClung and Schaerer, 1997, p.157).   

 
New Snow Precipitation Variables Two and three day cumulative new snow 

depths prior to wet avalanche days (HN0,-1,-2, HN0,-1,-2, -3) were on average 6.5cm and 

12cm greater than two and three day cumulative new snow depth prior to no-wet-

avalanche days (Table 7).  Average new snow accumulation rates for the HN0,-1,-2 and 

HN0,-1,-2, -3 variables are approximately 7.0 cm/day and 8.0 cm/day respectively for wet 

avalanche days and 5.0cm/day for days with no wet avalanches.  Quickly accumulating 

new snow under relatively warm conditions has little time to form bonds and can loose 

cohesion at lower liquid water contents than older, more well bonded snow (McClung 

and Schaerer, 1993).  Wet avalanche days have 0.5cm to 1.1cm more one day, two day 

and three day cumulative new snow water equivalent (HNW0,-1, HNW0,-1,-2, HNW0,-1,-2,-3) 

values than no-wet-avalanche days (Table 7).  This equates to a 0.6cm/day and 0.7cm/day 
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new snow water equivalent accumulation rate for wet avalanche days and a steady rate of 

0.4cm/day for days with no wet avalanches.   

Wet avalanche days have had average one and three day cumulative new snow 

densities (HND0,-1, HND0,-1,-2,-3) that are approximately 17.2kg/m3 to 18.6 kg/m3
 greater 

than no-wet-avalanche days (Table 7).  This is to be expected when one considers the 

higher new snowfall depths and greater new snow water equivalencies that have 

historically occurred on and leading up to wet avalanche days.  As density increases, the 

snow albedo decreases, which allows for more absorption of solar radiation by the 

snowpack.  

 
New Snow Dataset Summary New snow wet avalanche conditions have 22 

significant predictor variables; 12 are temperature related, three are related to snowpack 

settlement, and the remaining seven are precipitation variables (Table 7).  The distinction 

between new snow wet avalanche days and days with no wet avalanches lie in the slight 

differences in temperature where maximum, minimum and average temperatures as well 

as their multiple temperature ranges are only 1°C or 2°C warmer on wet avalanche days.  

The key difference seems to be larger than average, wetter than average and denser than 

average snowfalls that precipitate under slightly warmer conditions.  New snow requires 

less time and energy for wet avalanche development primarily because new snow is 

finer-grained and retains water more easily.  New snow also has fewer, smaller and 

weaker grain to grain contacts, and can fail at a lower water content than snow with 

greater initial strength, such as old snow (McClung and Schaerer, 1993).   
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Old Snow and New Snow Wet Avalanche Day  
Hypothesis Testing Results 
 

The results of the second hypothesis question provide information on if and how 

old snow wet avalanche conditions differ from new snow wet avalanche conditions 

(Table 8).  Only those variables with significantly different old snow and new snow 

means or medians are included in this table.  The means and medians are in their original 

non-transformed state for comparison purposes.  See Appendix B for means and medians 

tests for all of the old snow and new snow wet avalanche day variables (“Old Snow and 

New Snow Wet Avalanche Day Hypothesis Testing Results”). 

 
Table 8.  Old Snow vs. New Snow Wet Avalanche Days - Hypothesis Testing Results 
Significant Variables Only  

Significant 
Variables 

Test 

Old Snow 
Wet 
Avalanche 
Day Mean 
or Median 

New Snow 
Wet 
Avalanche 
Day Mean or 
Median 

Old Snow – 
New Snow 
Wet 
Avalanche 
Day Means 
or Medians 

P-Value 

MaxT0 2-Sample T-Test 9.1°C 1.1°C 8°C 0.000 
MaxT-1 2-Sample T-Test 6.9°C 0.4°C 6.5°C 0.000 
MaxT-2 2-Sample T-Test 4.5°C 0.5°C 4°C 0.004 
AvgMaxT0,-1 2-Sample T-Test 8.0°C 0.7°C 7.3°C 0.000 
AvgMaxT0,-1,-2 2-Sample T-Test 6.8°C 0.7°C 6.1°C 0.000 
AvgMaxT0,-1,-2,-3 2-Sample T-Test 6.0°C 0.8°C 5.2°C 0.000 
MinT0 2-Sample T-Test -2.8°°°°C -6.9C 4.1°°°°C 0.000 
MinT-1 2-Sample T-Test -4.2°C -7.8°C 3.6°C 0.001 
MinT-2 2-Sample T-Test -5.7°C -8.1°C 2.4°C 0.027 
MinT-3* 2-Sample T-Test -6.3°C -8.6°C 2.3°C 0.024 
AvgMinT0,-1‡ 2-Sample T-Test -3.5°°°°C -7.3°°°°C 3.8°°°°C 0.000 
AvgMinT0,-1,-2 2-Sample T-Test -4.2°C -7.6°C 3.4°C 0.000 
AvgMinT0,-1,-2,-3 2-Sample T-Test -4.8°C -7.9°C 3.1°C 0.000 
AvgT0 2-Sample T-Test 3.2°°°°C -2.9°°°°C 6.1°°°°C 0.000 
AvgT-1 2-Sample T-Test 1.3°C -3.7°C 5°C 0.000 
AvgT-2 2-Sample T-Test -0.6°C -3.8°C 3.2°C 0.005 
AvgT-3 2-Sample T-Test -1.4°C -3.6°C 2.2°C 0.035 
AvgAvgT0,-1‡ 2-Sample T-Test 2.2°C -3.3°C 5.5°C 0.000 
AvgAvgT0,-1,-2* 2-Sample T-Test 1.3°C -3.5°C 6.1°C 0.000 
AvgAvgT0,-1,-2,-3 2-Sample T-Test 0.6°C -3.5°C 4.1°C 0.000 
DDMaxT0 2-Sample T-Test 9.1°C 1.1°C 8°C 0.000 
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Significant 
Variables 

Test 

Old Snow 
Wet 
Avalanche 
Day Mean 
or Median 

New Snow 
Wet 
Avalanche 
Day Mean or 
Median 

Old Snow – 
New Snow 
Wet 
Avalanche 
Day Means 
or Medians 

P-Value 

DDMaxT0,-1 2-Sample T-Test 15.9°C 1.5°C 14.4°C 0.000 
DDMaxT0,-1,-2 2-Sample T-Test 20.5°C 2.0°C 18.5°C 0.000 
DDMaxT0,-1,-2,-3 2-Sample T-Test 23.8°C 3.4°C 20.4°C 0.000 
DDAvgT0 2-Sample T-Test 3.2°°°°C -2.9°°°°C 6.1°°°°C 0.000 
DDAvgT0,-1‡ 2-Sample T-Test 4.5°C -6.6°C 11.1°C 0.000 
DDAvgT0,-1,-2* 2-Sample T-Test 3.9°C -10.4°C 14.3°C 0.000 
DDAvgT0,-1,-2,-3 2-Sample T-Test 2.4°C -14.1°C 16.5°C 0.000 
MaxT0-MaxT-2 2-Sample T-Test 4.6°C 0.5°C 4.1°C 0.003 
MaxT0-MaxT-3 2-Sample T-Test 5.7°C -0.3°C 6.0°C 0.000 
AvgT0-AvgT-2 2-Sample T-Test 3.7°C 0.9°C 2.8°C 0.010 
AvgT0-AvgT-3 2-Sample T-Test 4.7°C 0.8°C 3.9°C 0.002 
MaxT0-MinT0 2-Sample T-Test 11.8°C 7.8°C 4.0°C 0.000 
MaxT-1-MinT-1 2-Sample T-Test 11.1°C 8.1°C 3.0°C 0.003 
MaxT-1-MinT0‡ 2-Sample T-Test 9.6°C 7.3°C 2.3°C 0.003 
HS0-HS-1† 2-Sample T-Test -5.1cm 0.2cm -5.3cm 0.000 
HS0-HS-2*‡ 2-Sample T-Test -9.9cm 4.4cm -14.3 cm 0.000 
HS0-HS-3* 2-Sample T-Test -11.6cm 8.5cm -20.1 cm 0.000 
HN0,-1,-2* 2-Sample T-Test 2.3cm 25.3cm -23 cm 0.000 
HN0,-1,-2,-3* 2-Sample T-Test 6.9cm 33.0cm -26.1 cm 0.000 
HNW0† 2-Sample T-Test 0.0cm 0.63cm -0.63cm NC 
HNW0,-1† 2-Sample T-Test 0.0cm 1.5cm -1.5 cm NC 
HNW0,-1,-2* Mann-Whitney 0.0cm 1.9cm -1.9 cm 0.000 
HNW0,-1,-2,-3 Mann-Whitney 0.1cm 2.6cm -2.5 cm 0.000 
HND0† 2-Sample T-Test 0.00cm 61.7kg/m3 -61.7kg/m3 NC 
HND0,1† 2-Sample T-Test 0kg/m3 95.7kg/m3 -95.77kg/m3 NC 
HND0,-1-,2,-3† 2-Sample T-Test 51.7kg/m3 93.9kg/m3 -42.27kg/m3 0.001 

Bold variables are significant predictors for both new and old snow wet avalanche conditions. 
*Transformed Variables – See Appendix B for λ value 
‡Variables that used unpooled sample variance in 2-Sample T-Test. All other variables used pooled  
   sample variance in 2-Sample T-Test. 
†Nonparametric variables that were tested using 2-Sample Tests with unequal variance. 
NC p-value could not be calculated because all values for old snow variable equal zero.  Difference                 
between new and old snow variable is likely significant. 

 
 
Old Snow and New Snow Wet Avalanche Day Temperature Variables  Prediction 

day, one day prior and two day prior maximum air temperatures (MaxT0, MaxT-1,   

MaxT-2) are significantly cooler for new snow wet avalanche days than old snow wet 

avalanche days (Table 8).  New snow maximum temperatures remain just above 0°C one 

Table 8.  Continued 
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and two days prior to the prediction day and increase to just over 1°C on the prediction 

day.  Because the new snow has had little time to form multiple strong bonds and retains 

liquid water more easily, less energy is required to create a cohesionless snowcover prone 

to release.  Old snow wet avalanche days on the other hand are far warmer starting at 

4.5°C three days prior to the prediction day and increasing steadily to 9.1°C by the 

prediction day.  The greater increases in temperature suggests that more energy is 

required to melt the strong melt-freeze bonds that often develop in old snow during 

spring-time conditions.  

One day, two day, and three day average maximum air temperature (AvgMaxT0,-1, 

AvgMaxT0,-1.-2, AvgMaxT0,-1,-2,-3) means are similar to the prediction day, one day prior 

and two days prior maximum temperature variables discussed above (Table 8).  New 

snow wet avalanche average maximum temperatures change very little and hover just 

above 0°C as the prediction day approaches, while old snow average maximum 

temperatures increase steadily from 6.0°C (AvgMaxT0,-1,-2,-3) to 8.0°C (AvgMaxT0,-1).  

The difference between old snow and new snow average maximum temperatures is 

considerable with differences ranging from approximately 5°C to 7°C.  Again, the 

differences illustrate that old and new snow wet avalanche conditions do form under very 

different temperature regimes. 

 Old and new snow wet avalanche conditions show similar temperature changes in 

their prediction day, one day prior, two days prior, and three days prior minimum air 

temperatures (MinT0, MinT-1, MinT-2, MinT-3) but new snow minimum temperatures are 

on average 2.3°C to 4.1°C cooler than old snow minimum temperatures (Table 8). 
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 Old and new snow averaged minimum air temperatures (AvgMinT0,-1,     

AvgMinT0,-1,-2, AvgMinT0,-1,-2,-3) behave similarly to old and new snow averaged 

maximum temperatures, although the difference between the new and old snow 

avalanche day average minimum temperatures are not as extreme as they are for the 

average maximum temperatures (Table 8).  New snow averaged minimum temperatures 

increase only 0.6°C over the three days period leading up to the prediction day while old 

snow averaged minimum temperatures increase 1.3°C over the three prior days.  New 

snow averaged minimum temperatures are on average about 3°C to 4°C cooler than old 

snow averaged minimum temperatures. 

 The prediction day, one day prior, two days prior, and three days prior averaged 

air temperature variables (AvgT0, AvgT-1, AvgT-2, AvgT-3) have almost the identical 

patterns seen in the  new and old snow minimum and maximum variables (Table 8).  The 

mean new snow average temperature variables remain between –3.6°C and –3.8°C during 

the three days leading up to the prediction day and then warm to –2.9°C on the prediction 

day.  Old snow average temperatures are generally about –1.4°C three days prior to the 

prediction day. The average temperature for each progressive day increases by about 

1.9°C to reach an average temperature of 3.2°C on the prediction day.  These temperature 

changes suggest that in the past, new snow wet avalanche conditions develop when the 

average temperature remains fairly constant for a few days before the prediction day with 

a slight warm-up on the prediction day itself – whereas old snow conditions display 

progressive warming over several days prior to the prediction day. 
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 One day prior, two days prior and three days prior averaged average air 

temperature (AvgAvgT0,-1, AvgAvgT0,-1,-2, AvgAvgT0,-1,-2,-3) means show the similar 

temperature change patterns seen in the averaged maximum and averaged minimum 

variables (Table 8).  New snow averaged average temperatures remain constant at about  

–3.5°C over the three day period and old snow averaged temperatures increase steadily 

from 0.6°C to 2.2°C.  Note again that new snow air temperatures remain below freezing 

and old snow air temperatures remain above 0°C.   

 The degree day variables using maximum air temperature for calculations 

(DDMaxT0, DDMaxT0,-1, DDMaxT0,-1,-2, DDMaxT0,-1,-2,-3) support the findings that old 

snow wet avalanche conditions have greater energy demands for formation than new 

snow wet avalanche conditions (Table 8).  This is seen by the obvious difference in 

degree day means for old and new snow wet avalanche days.  New snow wet avalanche 

day degree day totals range from just 1.1°C to 3.4°C while old snow degree day total 

range from 9.1°C to 23.8°C, a 8°C to 20.4°C difference. 

 A clear distinction can also be seen in the degree day variables using averaged air 

temperature (DDAvgT0, DDAvgT0,-1, DDAvgT0,-1,-2, DDAvgT0,-1,-2,-3) (Table 8).  New 

snow degree day totals range from –2.9°C to –14.1°C and old snow degree day ratios are 

all positive ranging from 2.4°C to 4.5°C, a 6.1°C to 16.5°C difference. 

 The two day maximum air temperature range (MaxT0-MaxT-2), three day 

maximum temperature range (MaxT0-MaxT-3), two day average air temperature range 

(AvgT0-AvgT-2), and three day average air temperature range (AvgT0-AvgT-3) all provide 

similar results and support the patterns seen in the earlier variables (Table 8).  New snow 
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wet avalanche temperature ranges vary from –0.3°C to 0.9°C for all four variables 

indicating that the weather conditions change very little for the three days leading up to 

the prediction day.  Old snow wet avalanche temperature ranges vary by about 2°C, and 

have a much warmer range of 3.7°C to 4.7°C suggesting a much stronger temperature 

increase and greater weather changes leading up to the prediction day. 

 The prediction day temperature range (MaxT0-MinT0) and the one day prior 

temperature range (MaxT-1-MinT-1) are 4°C to 3°C (respectively) greater for old snow 

wet avalanche days compared to new snow wet avalanche days.  Again, the differences 

indicate that old snow wet avalanche conditions experience stronger temperature 

increases during the prediction day and the days preceding the prediction day. 

 The overnight temperature range prior to the prediction day (MaxT-1-MinT0) is 

2.3°C less for new snow wet avalanche conditions than old snow wet avalanche 

conditions (Table 8).  The difference in temperature range is likely the result of cloudier 

skies in new snow conditions, which retain more of the previous day’s heat overnight.  

The higher day time temperatures seen in the mean maximum temperatures for old snow 

suggest clear sky conditions which would result in a greater loss of heat during the night 

and greater heat requirements the following day in order to melt the snow. 

 
 Old Snow and New Snow Wet Avalanche Day Snowpack Settlement Variables  

The one day, two day and three day change in total snow depth (HS0-HS-1, HS0-HS-2,       

HS0-HS-3) reflect the basic division of this dataset (Table 8).  Mean changes in snow 

depth are positive for new snow days because new snow is accumulating and mean 
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changes in snow depth are negative for old snow days because no new snow is 

accumulating on the prediction day or one day prior.  This also reflects the different 

temperature regimes in which old snow and new snow wet avalanche conditions develop.  

New snow conditions remain cool allowing snow to accumulate and not melt as readily 

while old snow conditions have much warmer temperatures that melt any new snow 

quickly. 

 Although the settlement variable was not found to behave significantly different 

on old snow days and new snow days, it is interesting to note that the cumulative two day 

settlement variable (Stl0,-1,-2) shows that new snow settlement rates are approximately 

0.5cm/day greater than old snow settlement rates.  Recall that the settlement variable 

excludes the addition of new snowfall in the calculation so that this variable only 

represents the processes that will reduce the total depth of the snowpack.  This difference 

in settlement rate is likely due to the fact that new snow snowpack is less dense than old 

snow snowpack, has fewer, smaller and weaker bonds within its matrix, and can therefore 

settle more rapidly than old snow.  Rapid settlement is a precursor to wet avalanche 

activity (McClung and Schaerer, 1993), which may be one of the reasons why new snow 

wet avalanche conditions require less energy input in the form of heat for releases to 

occur.  Cumulative two day settlement is the only significant predictor variable that does 

not behave significantly different for old snow and new snow wet avalanche conditions. 

 
Old Snow and New Snow Wet Avalanche Day Precipitation Variables  The 

cumulative two day and three days prior new snowfall amounts (HN0,-1,-2, HN0,-1,-2,-3)  

vary greatly between new and old snow wet avalanche days (Table 8).  New snow mean 
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cumulative two day snowfall is about 25cm (8.4cm/day) and cumulative three day 

snowfall totals are 33cm (8.3cm/day) on average.  Old snow cumulative two and three 

day snowfalls are just 2.3cm (0.8cm/day) and 6.9cm (1.7cm/day) respectively.  The large 

difference in new snow accumulations is a product of the fundamental characteristics of 

the new and old snow datasets.  Recall that new snow days can have recorded 

precipitation on prediction day, one day prior, two days prior and three days prior.  By 

definition, old snow days can only have recorded precipitation two days prior and three 

days prior to the prediction day.  The difference in accumulation totals may also be an 

artifact of the cooler new snow day air temperatures that help maintain accumulated new 

snow depths. 

 The prediction day, one day prior, two days prior and three days prior new snow 

water equivalent totals (HNW0, HNW0,-1, HNW0,-1,-2, HNW0,-1,-2,-3) also reflect the basic 

division of the new and old snow data (Table 8).  Old snow days do not have new 

snowfall, and therefore no new snow water equivalent totals, on the prediction day, or 

one day prior to the prediction day.  New snow water equivalent values are minimal for 

two days prior and three days prior to an old snow wet avalanche day because either no 

new snow fell or the snow had little water equivalent compared to the new snow that falls 

prior to a new snow wet avalanche day. New snow water equivalent prediction day, one 

day prior, two days prior and three days prior accumulations are on average about 0.6cm 

to 2.5cm greater for new snow days than old snow days. 

 The prediction day, one day prior and three days prior new snow density 

measurements  (HND0, HND0,-1, HND0,-1,-2,-3) are approximately 42kg/m3 to 96kg/m3 
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greater for new snow wet avalanche conditions than old snow wet avalanche conditions 

(Table 8).  Because old snow conditions by definition do not have measurable new 

snowfall amounts on the prediction day or one day prior to the prediction day, the HND0 

and HND0,-1 values are zero.  The old snow three day new snow density is 45% lower 

than the new snow three day new snow density values.  This is likely the result of little to 

no new snow falling three days prior to an old snow wet avalanche day, or the snow that 

fell was much less dense and had a lower snow water equivalent value than the snow that 

falls prior to a new snow wet avalanche day. 

  
 Old Snow and New Snow Wet Avalanche Day Summary New snow predictor 

variables tend to have fewer significant ‘leading’ day variables compared to old snow 

predictor variables suggesting that new snow wet avalanche conditions develop more 

quickly.  Unlike the old snow temperature related variables, new snow temperature 

related variables showed relatively little change in the days leading up to the wet 

avalanche day. Settlement rates in new snow wet avalanche conditions were similar to 

those of old snow wet avalanche conditions.  New snowfall characteristics were quite 

different however with new snow wet avalanche condition new snow totals, SWE totals 

and density values being much greater than those of old snow conditions.   

The data suggest and literature supports the idea that old snow wet avalanche 

conditions require more time and energy to develop than new snow wet avalanche 

conditions (McClung and Schaerer, 1993).  This is likely because old snow has had time 

to develop stronger grain-to-grain contacts and may have gone through more than one 

cycles of melt freeze before the avalanche day.  Melt-freeze can create extraordinarily 
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well-bonded grains and snow layers that require a large amount of energy for bond 

destruction (McClung and Schaerer, 1993).  In addition, old snow is more likely to have 

formed drainage channels within its matrix so that a well-drained snowpack has formed.  

In order to overwhelm these flow channels, a great deal of free water must be created, 

and this requires a large amount of heat input.   

   
Data Analysis – Model Design 

 
 
Correlation Testing Results  
 
 The correlation test results (Table 9) show that the prediction day average 

temperature (AvgT0) and prediction day degree using average temperature are perfectly 

correlated with one another (Pearson’s r = 1).  In other words, the two variables are 

identical. This occurred because the prediction day degree day variable uses the equation 

DDAvgT0 = AvgT0 - 0°C, which equals the prediction day average temperature, therefore 

DDAvgT0 = AvgT0.  Since the prediction day average temperature is a more familiar 

concept, the prediction day degree day variable was dropped from the analysis.  The old 

snow one day change in total snow depth variable (HS0 – HS-1) and the one day 

snowpack settlement variable (Stl0.-1) also have perfect correlation.  There is no new 

snowfall included in the HS0 – HS-1 variable because by definition, old snow days do not 

have recorded new snow on the prediction day or one day prior, therefore HS0 – HS-1 = 

Stl0,-1.  Since total snow depth (HS) is measured at the Alpine weather station and        

HS0 – HS-1 does not require any additional calculations, the one day snowpack  settlement 



76 

variable (Stl0,-1) was eventually dropped from the analysis.  All remaining variables were 

retained for further analysis. 

 
Table 9.  Old Snow Dataset - Correlation Test Results 
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Cell Contents:  Pearson’s Correlation Coefficient (r) 
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Table 9.  Continued 
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Table 10.  New Snow Dataset - Correlation Test Results 
 
 
 
 

 
 

 
 

 

 
 
 
 

 
 

 
 

 
 
 
Cell Contents:  Pearson’s Correlation Coefficient (r) 
Shaded cells contain r values between –1.0 to –0.5 and 0.5 to 1.0 
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Variable Selection Criteria and Process 
 
 The hypothesis testing results provide a list of old snow and new snow predictor 

variables (Table 6 and 7) that are potential candidates for the binomial logistic regression 

prediction models.  The correlation tests have established which variables are strongly 

correlated and should therefore be kept separate from one another in the final model 

building process.  At this time, the significant old snow and new snow variables are 

tested for their predictive capabilities using binomial logistic regression. 

 
Variable Selection Process – Part 1  Each variable in the old snow and new snow 

datasets were entered into a binomial logistic regression model individually to test their 

predictive significance at the α = 0.05 significance level.  Next, all possible variable pairs 

were entered into a binomial logistic regression model to determine which variables 

became significant when coupled with another variable and which variables lost their 

significance when coupled with another variable.  Many variables were dropped because 

of correlation issues.  A process of ‘within group’ correlation comparisons and ‘between 

group’ correlation comparisons was used to determine which variables had the greatest 

predictive capabilities.  For example, a ‘within group’ correlation comparison was made 

with the old snow one day, two day and three day averaged average temperature variables 

(AvgAvgT0,-1,  AvgAvgT0,-1,-2,  AvgAvgT0,-1,-2,-3).  All three variables are correlated with 

one another (r>0.05) (Table 9), but because AvgAvgT0,-1 has greater predictive success 

than the other two variables, it was retained for a ‘between group’ correlation comparison 

and the other averaged average temperature variables were dropped from the analysis.  

The old snow AvgAvgT0,-1 was then compared to the old snow prediction day average 
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temperature variable (AvgT0).  This is considered a ‘between group’ correlation 

comparison.  In this case, the prediction day average temperature variable was selected 

over the one day averaged average temperature variables because it had a slightly higher 

percent concordant pairs value. See Appendix B for results (“Old Snow Binomial 

Logistic Regression Results” and “New Snow Binomial Logistic Regression Results”). 

 The variables that were found to have the best predictive capabilities for old snow 

and new snow wet avalanche conditions are listed in Table 11.  Variables from each of 

the variable categories (temperature, snowpack settlement, and precipitation) were 

selected for further analysis as long as they fulfilled the criteria described above.  These 

variables (Table 11) had the highest percent concordant pairs (approximately 60-70% or 

greater) when tested individually and in combination with other variables.  When tested 

with another variable in a binomial logistic regression model, these variables maintained 

a significant p-value (<0.05) in the majority of the tests.  In most cases, only the best 

predictor from a group of correlated variables was retained, however some correlated 

variables were retained such as new snow cumulative snowfall (HN0,-1,-2, HN0,-1,-2,-3), 

snow water equivalent (HNW0,-1, HNW0,-1,-2, HNW0,-1,-2,-3), and density variables  

(HND0,-1, HND0,-1,-2,-3).  These correlated variables had nearly identical predictive success 

or their success would depend on which temperature or snowpack settlement variables it 

was tested with.  The second and third phase of the variable selection process will 

determine which variable arrangement will produce the final old snow and new snow wet 

avalanche prediction models. 
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Table 11.  Old Snow Model and New Snow Model Design Variables 

 
 
 Variable Selection Process – Part 2  At this point, the old snow and new snow 

training and testing datasets were created following the steps described in the methods 

section.  Refer to Table 2 for their descriptive statistics.  All possible combinations of the 

old snow and new snow variables listed in Table 11 were entered into a binomial logistic 

regression model using the appropriate ‘training’ datasets and then tested on the 

appropriate old snow and new snow ‘testing’ datasets (Table 3).  Model performance was 

ranked primarily on p-values; percent concordant, discordant and tied pairs; how 

consistent the models are when comparing ‘training’ dataset model results with ‘testing’ 

dataset model results; and whether the user will need to use forecasted information to 

calculate the model variables or if that information is readily available.  The last 

requirement does not imply that variables with better predictive success were discarded 

because they would be more difficult for the user to calculate.  More elaborate variables, 

or those variables that required more information, were only discarded if there was an 

alternative, more straight-forward variable that had a comparable predictive success rate.  

As before, p-values less than or equal to 0.05 indicate that there is sufficient evidence that 

the variable’s coefficient is significantly different than zero at the α = 0.05 significance 

Old Snow Variables – Model Design Phase New Snow Variables – Model Design Phase 

Day  MinT0 
MaxT0 MaxT-1-MinT0 
MinT0 Stl0,-1,-2 
AvgT0 HN0,-1,-2   
HS0-HS-2 HN0,-1,-2,-3   
 HNW0,-1 

 HNW0,-1,-2 
 HNW0,-1,-2,-3 
 HND0,-1 

 HND0,-1,-2,-3 
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General Form: εβ

εβ

+

+

+
=

in

in

X

X

n
e

e
iP

1
)(  

Where 

Pn(i) represents the probability of a specific outcome (1 = wet 
avalanche day) 

β is the regression coefficient estimated by maximum likelihood 
methods 

X is the independent explanatory variables (e.g., prediction day 
minimum temperature) 

ε is a random error or disturbance term that accounts for 
unobserved effects.   

1- Pn(i)  represents the probability of the alternate outcome (0 = 
no-wet-avalanche day) 

level, and greater percent concordant pairs and fewer discordant and tied pairs reflect the 

model’s increased predictive accuracy.  The top three old snow and new snow models 

were retained for further analysis, all other models were discarded. See Appendix B for 

discarded old snow and new snow model selection results (“Old Snow Model Selection 

Results” and “New Snow Model Selection Results”). 

 
 Variable Selection Process – Part 3  To further test the predictive capabilities of 

the top three old snow and new snow models, each model was converted into the 

binomial logistic regression equation in Figure 12. 

 
 

 
Figure 12.  Binomial Logistic Regression Equation 
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Old snow models ‘A’, ‘B’, and ‘C’ (in unranked order) and new snow models 

‘D’, ‘E’, and ‘F’ (also in unranked order), in the form described in Figure 12, were run 

once more using the appropriate training and testing datasets. The best old snow and new 

snow model showed the most consistency between training and testing dataset results and 

had fewer problems with over or underestimating the predicted wet avalanche 

probabilities. 

 
Top Three Old Snow Model Results  
 

The top three old snow model results are shown in Table 12 and Figures 13 

though 18.  Test results were very similar for Model A (Table 12, Figures 13 and 14), 

Model B (Table 12, Figures 15 and 16), and Model C (Table 12, Figures 17 and 18).  Old 

snow Model B was selected as the best old snow model for spring-time wet avalanche 

prediction because it has fewer problems with overestimating wet avalanche 

probabilities.  Model B predictor variable p-values for the training and testing dataset 

results were similar to those of Model A and C.  Odds ratios were slightly higher and 

more consistent for Model B variables.  Model B’s percent concordant pairs were slightly 

lower, and discordant and tied pairs were slightly higher but still very comparable to 

Model A and C.   
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Table 12. Top Three Old Snow Model Results 

 

Model B’s performance is best illustrated by comparing Figures 13 through 18.  

The gray bars represent the proportion of observed days with no wet avalanches (given as 

a percentage on the Y-axis) in the old snow dataset that were given the corresponding wet 

avalanche probability (as a percentage on the X-axis) by the models.  The black bars 

represent the proportion of observed wet avalanche days (given as a percentage on the  

 Old Snow Training Dataset Results Old Snow Testing Dataset Results 

Model A:  εin2HS0βHSin0βMaxT
e1

εin2HS0βHSin0βMaxT
e

(i)nP +−−+
+

+−−+

=  

Predictor Variables MaxT0 HS0-HS-2 MaxT0 HS0-HS-2 
Coefficients (β) 0.06315 -0.10157 0.05432 -0.07757 
P-Values 0.001 0.005 0.107 0.207 
Odds Ratios 1.07 0.90 1.06 0.93 
% Concordant, 
Discordant & Tied 
Pairs 

Concordant 
77.3% 

Discordant 
21.8% Tied   0.8% 

Concordant 
73.8% 

Discordant 
25.4% 

Tied  
0.8% 

Model B:  εin2HS0βHSin0βMinT
e1

εin2HS0βHSin0βMinT
e

(i)nP +−−+
+

+−−+

=  

Predictor Variables MinT0 HS0-HS-2 MinT0 HS0-HS-2 
Coefficients (β) 0.14511 -0.10199 0.15582 -0.06423 
P-Values 0.013 0.004 0.080 0.300 
Odds Ratios 1.16 0.90 1.17 0.94 
% Concordant, 
Discordant & Tied 
Pairs 

Concordant 
75.0% 

Discordant 
24.0% Tied   1.0% 

Concordant 
72.8% 

Discordant 
24.1`% 

Tied   
3.1% 

Model C:  εin2HS0βHSinDayin0βMinT
e1

εin2HS0βHSinDayin0βMinT
e

(i)nP +−−++
+

+−−++

=  

Predictor Variables MinT0 
Day of 
Year HS0-HS-2 MinT0 

Day of 
Year HS0-HS-2 

Coefficients (β) 0.12767 0.04441 -0.10015 0.14226 0.02408 -0.05704 
P-Values 0.031 0.067 0.007 0.115 0.623 0.374 
Odds Ratios 1.14 1.05 0.90 1.15 1.02 0.94 
% Concordant, 
Discordant & Tied 
Pairs 

Concordant 
75.0% 

Discordant 
24.2% Tied   0.8% 

Concordant 
74.6% 

Discordant 
24.6% 

Tied   
0.8% 
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Y-axis) in the old snow dataset that were given the corresponding wet avalanche 

probability (as a percentage on the X-axis) by the models.  For example, in Figure 13 

approximately 85% of all observed days with no wet avalanches in the old snow training 

dataset were given a wet avalanche probability of 91-100% by Model A.  Approximately 

95% of all observed wet avalanche days in the old snow dataset were also given a wet 

avalanche probability of 91-100% by Model A.  Ideally, all of the days with no wet 

avalanches (gray bars) would be clustered around low wet avalanche probabilities and all 

of the wet avalanche days (black bars) would be clustered around high wet avalanche 

probabilities. Compared to Model A and C, Model B gives a much more reasonable 

predicted wet avalanche day and no-wet-avalanche day distribution.  Although very 

consistent between training and testing dataset results, Models A and C both severely 

overestimate wet avalanche probabilities and the distributions are extremely skewed.  In 

other words, models A and C tend to give many ‘false alarms’ by predicting very high 

wet avalanche probabilities for both wet avalanche days and days with no wet 

avalanches.  Model B is also consistent between training and testing dataset results and 

more accurately predicts lower probabilities on observed no-wet-avalanche days and 

higher probabilities on observed wet avalanche days.   
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Old Snow Model A Training Dataset Results: 
Prediction Day Maximum Temperature and

Two Day Change in Total Snow Depth
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Figure 13. Old Snow Training Dataset Model A Results (predictors = MaxT0, HS0-HS-2) 
 
 
 

Old Snow Model A Testing Dataset Results: 
Prediction Day Maximum Temperature and 

Two Day Change in Total Snow Depth 
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Figure 14.  Old Snow Testing Dataset Model A Results (predictors = MaxT0, HS0-HS-2) 
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Old Snow Model B Training Dataset Results: 
Prediction Day Minimum Temperature and 

Two Day Change in Total Snow Depth
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Figure 15.  Old Snow Training Dataset Model B Results (predictors = MinT0, HS0-HS-2) 
 
 

Old Snow Model B Testing Dataset Results: 
Prediction Day Minimum Temperature and 

Two Day Change in Total Snow Depth
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Figure 16.  Old Snow Testing Dataset Model B Results (predictors = MinT0, HS0-HS-2) 
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Old Snow:Model C Training Dataset Results :
Prediction Day Minimum Temperature, Day of Year and 

Two Day Change in Total Snow Depth

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90% 91-100%

Predicted Wet Avalanche Probability 

P
ro

po
rt

io
n 

of
 W

et
 &

 N
o-

W
et

-A
va

la
nc

he
 

D
ay

s 
C

or
re

sp
on

di
ng

 to
 P

re
di

ct
ed

 
P

ro
ba

bi
li

ty

% No-Wet-Avy Day

% Avy Day

 
Figure 17.  Old Snow Training Dataset Model C Results (predictors = MinT0, Day,  
                  HS0-HS-2) 
 
 

Old Snow Model C Testing Dataset Results: 
Prediction Day Minimum Temperature, Day of Year and 

Two Day Change in Total Snow Depth
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Figure 18.  Old Snow Testing Dataset Model C Results (predictors = MinT0, Day,  
HS0 – HS-2) 
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The testing and training datasets were combined, and Model B was run on the 

entire old snow dataset (Fig. 19).  This creates slightly different coefficients in the model 

as well as slightly different results.  The model will never provide the user with a 

definitive  ‘yes/no’ answer, however, the results in Figure 19 demonstrate that all but one 

recorded wet avalanche in the past 32 years have occurred when the model predicts a   

31-80% probability for wet avalanche conditions.   

  

Old S now Model B Entire Dataset Results:
Prediction Day Minimum Temperature and Two Day Change in Total S now Depth 
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Figure 19.  Combined Training and Testing Dataset Old Snow Model B Results 
       (predictors = MinT0, HS0-HS-2) 
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The old snow model has a 75% overall success rate, that is, 75% of all the days in 

the old snow dataset were given accurate probabilities based on the model’s decision rule.  

The old snow models decision rule is positioned at 57%, the point that best divides the 

distributions of the observed wet avalanche days and no-wet-avalanche days (Fig 19).  

According to this decision rule, any day given a predicted wet avalanche probability of 

57% or greater should be a wet avalanche day and any day given a predicted wet 

avalanche probability less than 57% should be a day without wet avalanches.   

In order to correctly interpret a probability calculated by the old snow model, the 

following must be considered: how often does the model give observed wet avalanche 

days a probability of 57% or greater, and how often does the model give observed        

no-wet-avalanche days a probability less than 57%?  There were 90 old snow days that 

were given a wet avalanche probability of 57% or greater (Table 13).  According to the 

model’s decision rule, all 90 days should be wet avalanche days.  Only 18 of the 90 days 

(20%) were observed wet avalanche days.  The remaining 72 days (80%) were actually 

observed days with no wet avalanches that were given an inaccurate probability by the 

model.  There were 245 old snow days that were given a probability less than 57% by the 

model (Table 13). According to the model’s decision rule, all 245 days should be         

no-wet-avalanche days.  Out of the 245 days, 231 days (94%) were observed days with 

no wet avalanches days.  The remaining 14 days (6%) were inaccurately predicted 

observed wet avalanche days.   
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Table 13.  Old Snow Model Accuracy  

Observed Old Snow         
Wet Avalanche Days

Observed Old Snow         
No-Wet-Avalanche Days

Old Snow Model 
Predicted Wet 
Avalanche Day 
(Probability > 57%)

18 days                    
(correctly predicted)

72 days                    
(incorrectly predicted)

Total: 90 days

Old Snow Model 
Predicted No-Wet-
Avalanche Day 
(Probabiltiy < 57%)

14 days                    
(incorrectly predicted)

231 days                   
(correctly predicted)

Total: 245 days

Total: 32* days Total: 303* days  
*One wet avalanche day and six no-wet-avalanches days had missing data.  

 
The model user should keep two types of uncertainty in mind when assessing any 

given probability calculated by the old snow model.  First the user needs to consider the 

fundamental uncertainty associated with a probabilistic outcome.  As the predicted 

probability increases, the odds for a wet avalanche day increase and the odds for a day 

without wet avalanches decrease.  Even if the old snow model was 100% accurate, 

always calculating a probability of 57% or greater for wet avalanche days and always 

calculating a probability less than 57% for days with no wet avalanches, there would still 

be uncertainty in the predicted probability.  The only time this uncertainty would not 

exist would be if a model with 100% accuracy calculated a 0% or 100% probability for 

wet avalanches.  The second type of uncertainty relates to the old snow model’s success 

rates for wet avalanche days and days with no wet avalanches.  The old snow model has a 

20% success rate for accurately calculating probabilities for wet avalanche days (> 57%) 

and a 94% success rate for accurately calculating probabilities for days with no wet 
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avalanches (<57%) based on its decision rule.  For example, suppose the old snow model 

calculates a wet avalanche probability of 30%.  The odds for a wet avalanche day (30%) 

are lower than the odds for a day with no wet avalanches (70%).  Next the user needs to 

consider the model’s accuracy given this predicted probability.  Based on the success rate 

described above, when the old snow model predicts a wet avalanche probability between 

0-56%, 9 out of 10 days will not have wet avalanches.  Therefore the user can be fairly 

confident that the prediction day will not be a wet avalanche day, but there is a small 

possibility for wet avalanche occurrence.  Suppose the old snow model calculates a wet 

avalanche probability of 70%.  The odds for a wet avalanche day (70%) are now greater 

than the odds for a day with no wet avalanches (30%).  When the old snow model 

calculates a wet avalanche probability between 57-100%, only 2 out of 10 days will have 

wet avalanche conditions.  Given this relatively low success rate, the user cannot be as 

confident in the predicted probability.  To gain more confidence in the model’s predicted 

probability, the user can compare the prediction day’s meteorological and snowpack 

conditions with the old snow wet avalanche indicator variables described below to 

determine whether current conditions are similar to wet avalanche conditions in the past. 

 
Old Snow Wet Avalanche Indicator Variables 
 

Histograms were created to determine whether there are wet avalanche threshold 

values for the old snow variables that were used in models A, B, and C (Fig. 11 and Figs. 

20-22).  If thresholds are evident, the variables can be used independently from the model 

as wet avalanche indicators and at the very least, provide a graphical summary of 32 
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years of wet avalanche data. The figures are simple frequency plots of each variable 

against old snow wet avalanche days.   

‘Day’ of year (Fig. 11) does not appear to have clear upper and lower wet 

avalanche thresholds as wet avalanches have been recorded on old snow every day in 

March.  Wet avalanche activity appears to be at its minimum during the first five days of 

March (day 60-64).  Wet avalanche activity generally increases from day 65 through 84 

and begins to taper off during the last six days of March.  

The prediction day maximum temperature (MaxT0) wet avalanche day 

distribution  (Fig. 20) shows that all recorded wet avalanches have occurred between       

–10°C and 16°C. A wet avalanche releasing on a day where the maximum temperature is 

below 0°C may seem unlikely, but recall that temperature is only one component 

(longwave component) of the total energy available to melt snow (Brandt and Warren, 

1993).  The wet avalanche that released when the maximum temperature was between 

0°C and -10°C (actual temperature was –8.3°C) (Fig. 20) may be an outlier that should be 

ignored, however there is a possibility that the day was very sunny and no wind was 

present or that there may have been a strong air temperature inversion present that day.  

In such a case, the upper mountain could have been warm enough to produce a wet 

avalanche while the Alpine weather station, located at mid-mountain remained very cool.  

Wet avalanches that went unrecorded may have also released when temperatures were 

greater than 16°C.  A reliable threshold with the prediction day maximum temperature 

distribution in Figure 20 is difficult to determine, but the data do illustrate that over 75% 
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of the recorded wet avalanches occurred between 4°C and 14°C, with 24% occurring 

when the maximum temperature is between 12°C and 14°C.  

 

Old Snow Wet Avalanche Day: 
'Prediction Day Maximum Temperature' Distribution
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Figure 20.  Old Snow Prediction Day Maximum Temperature Distribution on Wet 
Avalanche Days 

 

The prediction day minimum temperature (MinT0) wet avalanche day distribution 

(Fig. 21) appears to have a bimodal distribution with wet avalanches recorded when 

minimum temperatures ranged between –20°C and  -5°C and -2°C and 3°C.  Whether 

this bimodal distribution is a real pattern or simply the result of a few wet avalanches 

going unrecorded on days with minimum temperatures of –4°C and -3°C is uncertain.  

Perhaps the wet avalanches associated with the sub-zero temperatures occurred under 

clear sky conditions which would allow for very cool night-time temperatures followed 

by warm sunny days with increased incoming shortwave radiation.  The wet avalanches 
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associated with the positive minimum temperatures may have released under cloudy 

conditions, which would maintain mild minimum temperatures.  Thresholds are difficult 

to determine, however it is apparent that nearly one-quarter of the observed wet 

avalanches released when the prediction day minimum temperature was -5°C.  

 

Old Snow Wet Avalanche Day: 
'Prediction Day Minimum Temperature' Distribution
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Figure 21.  Old Snow Prediction Day Minimum Temperature Distribution on Wet 
Avalanche Days 
 
  

The two–day change in total snowpack depth (HS0-HS-2) wet avalanche day 

distribution (Fig. 22) also has a split, or bimodal distribution.  There is uncertainty about 

whether the lack of recorded wet avalanches in the 8cm to 10cm range is a real 

phenomenon or an artifact of this dataset.  The HS0-HS-2 distribution does clearly show 

that over one-third of the recorded wet avalanches released when the total snowpack 

depth decreased 10cm to 12cm between the prediction day and two days prior, and 75% 
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of the recorded wet avalanches released when the total snowpack depth decreased 

between 16cm and 6cm between the prediction day and two days prior. 

 

Old Snow Wet Avalanche Day: 
'Two Day Change in Total Snow Depth' Distribution
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Figure 22.  Old Snow Two Day Change in Total Snow Depth Distribution on Wet 
Avalanche Days 
 
 
Top Three New Snow Model Results 
 

The top three new snow model results are illustrated in Table 14 and Figures 23 

through 28.  New snow Model E was chosen as the best new snow wet avalanche 

prediction model (Table 14, Fig. 25 and Fig. 26) because it has fewer problems with 

underestimating wet avalanche probability.  Model E’s predictor variable p-values were 

similar to Model D’s (Table 14, Fig. 23 and Fig. 24) and better than Model F’s (Table 14, 

Fig. 27 and Fig. 28).  Odds ratios were greater and more consistent for Model E variables 

than the other two models.  Model E’s percent concordant pairs were greater than Model 
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D’s and equal to model F’s, while the percent discordant and tied pairs were lower than 

Model D and nearly identical to Model F’s.   

 
Table 14.  Top Three New Snow Model Results 

   

 

 

 

 New Snow Training Dataset Results New Snow Testing Dataset Results 

Model D:  
ε

in21,0,
βHN

in0
e ββMin1

ε
in21,0,

βHN
in0

βMinT

e
(i)nP

+
−−

++

+
−−

+

=  

Predictor Variables MinT0 HN0,-1,-2 MinT0 HN0,-1,-2 
Coefficients (β) 0.12978 0.020115 0.23299 0.03315 
P-Values 0.009 0.022 0.010 0.109 
Odds Ratios 1.14 1.02 1.26 1.03 
% Concordant, 
Discordant & Tied 
Pairs 

Concordant 
67% 

Discordant 
30.8% Tied   2.2% 

Concordant 
70.6% 

Discordant 
28.1% 

Tied  
1.2% 

Model E:  ε
in32,1,0,

βHNW
in0

βMinT

e1

ε
in32,1,0,

βHNW
in0

βMinT

e
(i)nP +

−−−
+

+

+
−−−

+

=  

Predictor Variables MinT0 HNW0,-1,-2,-3 MinT0 HNW0,-1,-2,-3 
Coefficients (β) 0.12379 0.3362 0.21486 0.4153 
P-Values 0.013 0.001 0.016 0.078 
Odds Ratios 1.13 1.40 1.24 1.51 
% Concordant, 
Discordant & Tied 
Pairs 

Concordant 
72.1% 

Discordant 
26.4% Tied   1.5% 

Concordant 
71.9% 

Discordant 
27.3% 

Tied   
0.7% 

Model F:  
ε

in0
MinT

1
βMaxT

in32,1,0,
βHNW

in0
βMinT

e1

ε
in0

MinT
1

βMaxT
in32,1,0,

βHNW
in0

βMinT

e
(i)nP +−

−
+

−−−
+

+

+−
−

+
−−−

+

=  

Predictor Variables MinT0 HNW0,-1,-2,-3 
MaxT-1- 
MinT0 MinT0 HNW0,-1,-2,-3 

MaxT-1- 
MinT0 

Coefficients (β) 0.11333 0.3275 -0.0857 0.1346 0.3222 -0.3428 
P-Values 0.033 0.001 0.574 0.214 0.197 0.215 
Odds Ratios 1.12 1.39 0.92 1.14 1.38 0.71 
% Concordant, 
Discordant & Tied 
Pairs 

Concordant 
72.1% 

Discordant 
26.6% Tied   1.4% 

Concordant 
74.4% 

Discordant 
24.8% 

Tied   
0.8% 
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One would likely choose Model F as the best predictive model based on the test 

scores alone.  However, the distributions shown in Figures 23 through 28 show that 

Models D and F underestimate wet avalanche probabilities.  Model D (Figs. 23 and 24) 

predicts almost as accurately as Model E, but Model D seems to slightly underestimate 

wet avalanche probability in general.  The training dataset distribution for Model E    

(Fig. 25) shows two well-defined bell-shaped curves for the observed no-wet-avalanche 

day and wet avalanche day occurrence vs. the model’s predicted probability.  The 

observed days with no wet avalanches are centered about the 31-40% predicted 

probability range and the observed wet avalanche days are centered about the 51-60% 

predicted probability range.   The testing dataset plot (Fig. 26) does not have as well-

defined bell-shaped curves, but the results are fairly consistent with the model predicting 

higher wet avalanche probabilities for wet avalanche days and lower probabilities on days 

with no wet avalanches.  Model F underestimates the wet avalanche probability to a 

greater degree than Model D, and its testing dataset results are not as consistent with its 

training dataset results (Figs. 27 and 28). Out of the three models, Model E most 

accurately assigns wet avalanche days higher wet avalanche probabilities and days with 

no wet avalanches lower wet avalanche probabilities.   
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New Snow Model D Training Dataset Results: 
Prediction Day Minimum Temperature and 

Two Day Cumulative New Snow Depth
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Figure 23.  New Snow Training Dataset Model D Results (predictors = MinT0, HN0,-1,-2) 
 
 
 

New Snow Model D Testing Dataset Results: 
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Figure 24.  New Snow Testing Dataset Model D Results (predictors = MinT0, HN0,-1,-2) 
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New Snow Model E Training Dataset Results: 
Prediciton Day Minimum Temperature and 

Three Day Cumulative New Snow Water Equivalent
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Figure 25.  New Snow Training Dataset Model E Results  
                 (predictors = MinT0, HNW0,-1,-2,-3) 
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Figure 26. New Snow Testing Dataset Model E Results  
(predictors = MinT0, HNW0,-1,-2,-3) 
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New Snow Model F Training Dataset Results: 
Prediction Day Minimum Temperature, Three Day Cumulative New 

Snow Water Equivalent, and Overnight Temeprature Range
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Figure 27. New Snow Training Dataset Model F Results 
                 (predictors = MinT0, HNW0,-1,-2,-3, MaxT-1-MinT0) 
 
 

New Snow Model F Testing Dataset Results: 
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Figure 28.  New Snow Testing Dataset Model F Results 

(predictors = MinT0, HNW0,-1,-2,-3, MaxT-1-MinT0) 
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Figure 29 provides Model E results when the training and testing datasets are 

combined and the model is run on the entire new snow dataset.  This creates slightly 

different coefficients in the model equation, and results vary somewhat from the training 

and testing dataset results described above.  As with the old snow prediction model, this 

new snow prediction model will not provide the user with a definitive ‘yes/no’ answer.  

Results in Figure 29 demonstrate that all wet avalanches in the past 32 years have 

occurred when the model predicts an 11-80% probability for wet avalanche conditions.    

 

New S now Model E Entire  Dataset Results: 
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Three  Day Cumulative  New S now Water Equivalent
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Figure 29.  Combined Training and Testing Dataset New Snow Model E Results 
                  (predictors = MinT0, HNW0,-1,-2,-3) 
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The new snow model has a 72% overall success rate, in other words, 72% of all 

the days in the new snow dataset were given accurate probabilities based on the model’s 

decision rule.  The new snow model’s decision rule is positioned at 45%, the point that 

best divides the distributions of the observed wet avalanche days and days with no wet 

avalanches (Fig. 29).  According to the new snow model’s decision rule, any day that is 

given a wet avalanche probability of 45% or greater should be a wet avalanche day and 

any day given a predicted wet avalanche probability less than 45% should be a day 

without wet avalanches. 

 The same questions asked of the old snow model must be taken into consideration 

with the new snow model in order to correctly interpret its predicted probabilities:  how 

often does the model give observed wet avalanche days a probability of 45% or greater, 

and how often does the model give observed days with no wet avalanches a probability 

less than 45%?  There were a total of 195 new snow days that were given a wet avalanche 

probability of 45% or greater (Table 15).  According to the new snow model’s decision 

rule, all 195 days should be wet avalanche days.  Only 18 days (9%) were observed wet 

avalanche days.  The remaining 177 days (91%) were observed days with no wet 

avalanches that were inaccurately given a probability greater than 45%.  There were 477 

days in the new snow dataset that were given a wet avalanche probability less than 45% 

(Table 15). According to the new snow model’s decision rule, all 477 days should be 

days with no wet avalanches.  Of the 477 days, 456 days (96%) were observed days with 

no wet avalanches.  The remaining 21 days (4%) were observed wet avalanche days that 

were given inaccurate probabilities by the model. 
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Table 15.  New Snow Model Accuracy 

Observed New Snow         
Wet Avalanche Days

Observed New Snow         
No-Wet-Avalanche Days

Old Snow Model 
Predicted Wet 
Avalanche Day 
(Probability > 57%)

18 days                    
(correctly predicted)

177 days                   
(incorrectly predicted)

Total: 195 days

Old Snow Model 
Predicted No-Wet-
Avalanche Day 
(Probabiltiy < 57%)

21 days                    
(incorrectly predicted)

456 days                   
(correctly predicted)

Total: 477 days

Total: 39 days Total: 633* days  
*71 no-wet-avalanche days were missing data. 

 
 Interpretation of the new snow model’s predicted wet avalanche probability is 

similar to the interpretation described for the old snow model.  When assessing any given 

probability by the new snow model, the user needs to consider the fundamental 

uncertainty associated with a probabilistic outcome in addition to the uncertainties 

associated with the model’s success rates for wet avalanche days and days with no wet 

avalanches.  The new snow model has a 9% success rate for accurately calculating 

probabilities for wet avalanche days (> 45%) and a 96% success rate for accurately 

calculating probabilities for days with no wet avalanches (<45%).  If the new snow model 

calculates a low wet avalanche probability, such as 25%, the odds for a wet avalanche 

day (25%) are lower than the odds for a day without wet avalanches (75%).  Based on 32 

years of wet avalanche data, when the new snow model calculates a wet avalanche 

probability between 0-44%, 9 out of 10 days will not have wet avalanches.  Given the 

low predicted probability and the new snow model’s high success rate for days with no 
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wet avalanches, the user can be fairly confident that no wet avalanches will occur on the 

prediction day, however, the possibility of a wet avalanche occurrence, although small, 

cannot be ruled out.  If the new snow model calculates a high wet avalanche probability, 

such as 75%, the odds for a wet avalanche day (75%) are greater than the odds for a day 

with no wet avalanches (25%).  When the new snow model calculates a wet avalanche 

probability between 45-100%, only 1 out of 10 days will be a wet avalanche day.  Given 

this low success rate, the user cannot be as confident in the predicted probability.  As 

with the old snow model, the user can gain more confidence in the new snow model’s 

predicted probability by comparing the prediction day’s meteorological and snowpack 

conditions with the new snow wet avalanche indicator variables described below. 

 
New Snow Wet Avalanche Indicator Variables 
 

Frequency charts were created to determine whether there are wet avalanche 

threshold values for the new snow variables that were used in models D, E, and F (Figs. 

30-33).  If thresholds do exist, the variables can be used independently from the model as 

wet avalanche indicators and at the very least, provide a graphical summary of 32 years 

of wet avalanche data.  The figures are simple histograms of each variable against new 

snow wet avalanche days.  
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New snow prediction day minimum temperature (MinT0) (Fig. 30) may have 

minimum and maximum threshold values at -11°C and -1°C with outliers at -17°C,          

-14°C, -13°C and 2°C.  Figure 30 shows that almost 85% of all recorded wet avalanches 

occurred when the minimum temperature ranged from -9°C to -1°C, with 23% occurring 

at -7°C and 18% occurring at -3°C.   

 

New Snow Wet Avalanche Day:
'Prediction Day Minimum Temperature' Distribution
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Figure 30.  New Snow Prediction Day Minimum Temperature Distribution on Wet 
Avalanche Days.  
 
 

The cumulative two day new snow depth (HN0,-1,-2) (Fig. 31) has fairly clear 

minimum and maximum values for wet avalanche days (0cm to 50cm), particularly if one 

can determine if the observed avalanche that occurred when the cumulative two day new 

snow total at 90-100cm is an outlier.  Almost all of the observed wet avalanches (95%) 

released on 2.5cm to 40cm of cumulated two day new snow totals.  Approximately 28% 
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of all new snow wet avalanches released with 10cm to 20cm of new snow, 25% released 

on 20cm to 30cm of new snow, and approximately 31% occurred when cumulative two 

day new snow ranged from 30cm to 40cm.   

 

New Snow Wet Avalanche Day:
'Two Day Cumulative New Snow Depth' Distribution
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Figure 31.  New Snow Two Day Cumulative New Snow Depth Distribution on Wet 
Avalanche Days 
 
 

Approximately 62% of all recorded wet avalanches released on days with a three 

day cumulative new snow water equivalent of 1cm to 3cm and 77% of all recorded wet 

avalanches released when the three day new snow water equivalent totals ranged from 

1cm to 4cm (Fig. 32).   Frequency drops off quickly when accumulation exceeds 3cm of 

liquid water.  The higher snow water equivalents may be the result of heavy, deep 

snowfalls which behaved more like an insulating blanket over the snowpack and 
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prevented it from being heated at depth by incoming radiation (Brandt and Warren, 

1993).   

 

New Snow Wet Avalanche Day :
'Three Day Cumulative New Snow Water Equivalent' Distribution
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Figure 32.  New Snow Wet Three Day Cumulative New Snow Water Equivalent 
Distribution on Wet Avalanche Days 
 
 

There are no clear threshold values for the overnight temperature range preceding 

the prediction day (MaxT-1-MinT0) (Fig. 33).  Approximately 67% of observed wet 

avalanches released when overnight temperature ranges were between 2°C and 12°C.  In 

the past, the top three most likely overnight temperature ranges for wet avalanche 

conditions are 2°C to 4°C with 18% of the observed releases, 4°C to 6°C with 15% of the 

releases and 6°C to 8°C also with 15% of the recorded releases.  The negative 

temperature values indicate that the prediction day minimum temperature is warmer than 

the previous day’s maximum temperature.  Wet avalanche releases are minimal in the      
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-6°C to 0°C overnight temperature range because the cooler maximum temperature from 

the previous day has caused the snowpack’s ‘heat deficit’ to increase, which in turn 

increases the energy requirements for melt to take place the following day (Cline, 1997).  

Positive temperatures indicate that the air temperature cooled overnight.  As expected, 

evenings with minimal cooling, particularly in the 2°C to 8°C temperature range, require 

less energy the following day to raise the snow temperature to 0°C prior to melt and are 

most likely to be followed by a wet avalanche day.  Frequency drops off steadily as the 

overnight temperature cools more than 10°C and the next day’s energy requirements for 

snowmelt increase. 

 

New Snow Wet Avalanche Day:
'Overnight Temperature Range' Distribution
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Figure 33.  New Snow Prediction Day Overnight Temperature Range Distribution on 
Wet Avalanche Days 
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Data Analysis - Summary 
 
 
Hypothesis Testing Summary 

By dividing the original Bridger Bowl dataset into separate old snow and new 

snow datasets, patterns emerged that have gone overlooked in past wet avalanche studies.  

Old snow wet avalanche conditions tend to begin developing two to three days prior to 

the wet avalanche day (Table 6).  In contrast, new snow wet avalanche conditions 

generally develop much more quickly with warning signs most evident just one day prior 

to the wet avalanche day (Table 7).  Old snow wet avalanche conditions require more 

time and energy for development because the snow has had time to form stronger grain-

to-grain bonds.  Old snow may have gone through one or more cycles of melt-freeze 

before the avalanche day.  This process can produce extremely well-bonded snow grains 

and snow layers that require a great deal of energy in order for those bonds to be 

destroyed (McClung and Schaerer, 1993).  New snow requires less time and energy for 

wet avalanche development primarily because the new snow has finer-grained snow 

crystals that tend to retain liquid water more readily because of increased surface tension 

associated with the increased surface area within the new snow matrix.  New snow has 

fewer, smaller and weaker grain-to-grain contacts, and can fail at a lower water content 

than snow with greater initial strength, such as old snow (McClung and Schaerer, 1993).   

Predictor variable behavior for old snow and new snow wet avalanche day vs.  

no-wet-avalanche days was quite distinct as well.  Temperature variables were 

particularly important for distinguishing between a day with no wet avalanches and a wet 
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avalanche day for old snow conditions.  Maximum, minimum and average temperatures 

generally increase rapidly and total snowpack depth decreases rapidly prior to an old 

snow wet avalanche day (Table 6, Table 8 and Figs. 20-22).  These patterns suggest that 

old snow avalanches most often develop under warm spring-time conditions.  New snow 

wet avalanches seem to develop with a less distinct pattern.  Temperature variables are 

generally just 1°C to 2°C warmer on wet avalanche days than days with no wet 

avalanches (Table 7).  Temperatures remain fairly stable and cool suggesting that new 

snow wet avalanche conditions may develop under very moist, cool and cloudy 

conditions or under sunny conditions that develop immediately after a new snowfall 

event (Fig. 30 and Fig. 33).  New snowfall characteristics provide the best distinction 

between new snow wet avalanche days and no-wet-avalanche days.  Two to three 

consecutive days of greater than average, wetter than average and more dense than 

average snowfalls with slightly warmer temperatures appear to be the driving factors for 

new snow wet avalanche formation (Table 7, Fig. 31 and Fig. 32).   

 
Model Design and Application Summary 
 
 The old snow and new snow final models will provide the Bridger Bowl patrol 

with a new way to assess the probability of wet avalanche conditions based on 32 years 

of wet avalanche data. The experience of the Bridger patrol enables them to anticipate the 

onset of wet avalanche conditions when they present themselves with classic wet snow 

characteristics such as increased snowpack settlement rates after successive days of 

intense heating (McClung and Schaerer, 1993).  When typical wet snow conditions are 

developing, ski patrollers are assigned a route on the mountain and continually ski this 
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route to observe changes occurring in the snowpack.  Running the appropriate model the 

morning of a possible wet avalanche day will give the patrollers the probability for wet 

avalanche danger.  Comparing the model’s probability as well as the prediction day’s 

current meteorological and snowpack conditions with historical wet avalanche data will 

give patrollers supplementary information to help prepare them for any additional safety 

measures that need to take place later that day.  The models will also serve as a useful 

learning tool for new patrollers who can quickly and easily check the accuracy of their 

own thoughts on wet avalanche probability with the model’s calculations.  They can also 

quickly access graphs of wet avalanche indicator variables (Figs. 11, 20-22 and Figs. 30-

33) to gain a better understanding of historical wet avalanche activity given the present 

day meteorological and snowpack conditions.  The old and new snow wet avalanche 

indicator graphs will be very helpful when used on days when wet avalanches are not 

expected.  The wet avalanche indicator graphs (Figs. 11, 20-22 and Figs. 30-33) show 

that wet avalanches have occurred over a surprisingly broad range of temperatures, 

snowpack depth change, and precipitation totals.   

The models are easy to use and provide reliable, practical results that do not 

require the user (a ski patroller) to have a strong statistical background or calculate 

complex variables.  The user should adopt the old snow model when there has been no 

recorded new snowfall within the last 48 hours.  Simply enter the present day minimum 

temperature, the present day total snowpack depth and the snowpack depth from two days 

prior into the Excel program.  The model will automatically calculate a wet avalanche 

probability based on the present day minimum temperature and the total change in 
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snowdepth that occurred over the last two days.  The old snow model has an overall 

success rate of 75%, that is, 75% of all the old snow days were given accurate 

probabilities by the old snow model.  In order to correctly interpret the wet avalanche 

probability predicted by the old snow model, the model’s decision rule must be taken into 

consideration.  The old snow models decision rule is positioned at 57%.  According to 

this decision rule any day given a wet avalanche probability of 57% or greater should be 

a wet avalanche day and any day given a wet avalanche probability less than 57% should 

be a day without wet avalanches.   When the old snow model’s predicted probabilities are 

compared to 32 years of observed data, 9 out of 10 days with no wet avalanches are 

correctly given a predicted probability less than 57% and 2 out of 10 wet avalanche days 

are correctly given a predicted probability of 57% or greater.  When assessing a 

probability calculated by the old snow model, the user must take into consideration the 

fundamental uncertainties associated with a probabilistic outcome in addition to the 

uncertainties associated with the model’s success rates for wet avalanche days (20%) and 

days with no wet avalanches (94%).   

If there has been measurable new snowfall within the last 48 hours, the new snow 

model should be used.  This model uses the present day minimum temperature, and the 

cumulated snow water equivalent total over the last three days, including the present day 

to calculate the current wet avalanche probability (the SWE for the present day may need 

to be estimated by the user).  This model has given accurate wet avalanche probabilities 

for 72% of the new snow dataset.  The decision rule for the new snow model is 

positioned at 45%.  According to this rule, any day given a wet avalanche probability less 
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than 45% should be a day with no wet avalanches, and any day given a wet avalanche 

probability of 45% or greater should be a wet avalanche day.  When the new snow 

model’s predicted probabilities are compared to 32 years of observed data, 9 out of 10 

days with no wet avalanches are correctly given a probability less than 45% by the model 

and only 1 out of 10 wet avalanche days are correctly given predicted probabilities of 

45% or greater.  When the user is assessing a probability calculated by the new snow 

model, the fundamental uncertainties associated with a probabilistic outcome must be 

taken into consideration in addition to the uncertainties associated with the new snow 

model’s success rates for wet avalanche days (9%) and days with no wet avalanches 

(96%).   

The uncertainty associate with both models reinforces the importance of the 

historical wet avalanche data provided in the wet avalanche indicator graphs (Figs. 11, 

20-22 and Figs. 30-33).  When the models’ predicted probabilities are compared to the 

observed wet avalanches vs. predicted probability charts (Fig. 19 and Fig. 29) and the wet 

avalanche indicator graphs (Figs. 11, 20-22 and Figs. 30-33), the user will be able to 

assess the current probability of wet avalanche conditions based on historical wet 

avalanche data.  

The procedure for running the new snow and old snow models is outlined below 

(Fig. 34).  The models were originally developed using Microsoft Excel software, but the 

algorithms can be computed on any spreadsheet software similar to Excel.  Instructions 

for creating the models in Microsoft Excel and a detailed ‘help’ document are available in 

Appendix C.  A copy of the models, as well as the observed wet avalanche vs. predicted 
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probability charts, wet avalanche indicator charts, and the ‘help’ document are available 

on CD at the Montana State University Earth Science Department. 

 
Bridger Bowl Wet Avalanche Probability Models

Was there measurable new snow today, or do you expect a measurable amount to fall today?
If YES, go to "New Snow Model"
IF NO, go to the next question….

Was there measurable new snow yesterday?
If YES, go to "New Snow Model" 
If NO, go to "Old Snow Model"

New Snow Model
Use the "Prediction Day Minimum Temperature" and "Cumulative Three Day 
Snow Water Equivalent (SWE)" measurements recorded at the Alpine weather
 station to calculate the probability of wet avalanche conditions today DO NOT TYPE IN THIS COLUMN

Enter today's recorded, or expected minimum temperature (degrees Fahrenheit): 32 0.0

Enter today's recorded, or expected snow water equivalent (inches): 0 0.0
Enter yesterday's recorded snow water equivalent (inches): 0.5 1.3
Enter the day before yesterday's snow water equivalent (inches): 0.1 0.3
Enter the snow water equivalent from two days before yesterday (inches): 0.3 0.8

2.3
 

68%

Old Snow Model
Uses the "Prediction Day Minimum Temperature" and the  "Two Day Total Change 
in Snow Depth" measurements recorded at the Alpine weather station to 
calculate the probability of wet avalanche conditions today DO NOT TYPE IN THIS COLUMN

Enter today's recorded, or expected minimum temperature (degrees Fahrenheit): 27 -2.8

Enter today's recorded total snow depth (inches): 59 149.9
Enter the day before yesterday's total snow depth (inches): 61 154.9

-5.1

 51%

Predicted New Snow Wet Avalanche Probability

Predicted Old Snow Wet Avalanche Probability

Figure 34.  Old Snow and New Snow Model Example in Excel Worksheet 
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Although the models were developed using March data, it seems reasonable to 

extend their use to late February and early April. As mentioned in the introduction, 

Bridger Bowl is just one of several ski areas in the intermountain snow climate that has 

long term meteorological, snowpack and avalanche database on the WWAN (Mock and 

Birkeland, 2000).  The same statistical approach might be applied to another 

intermountain ski area such as Alta or Jackson Hole to compare the results with the 

Bridger Bowl results.  The 75% and 72% overall success rates for the old and new snow 

models compare well with previous statistical studies, especially considering that the 

Bridger Bowl dataset lack several important data types such as wind speed, sunshine 

hours, cloudiness, precipitation intensity, hourly temperature intervals and net radiation 

data. A direct comparison of this study’s model results to other studies’ model results is 

somewhat difficult because most of the models are tailored for dry snow avalanche 

conditions and were developed using discriminant-based analysis rather than a 

probabilistic model approach.  A handful of studies referenced in the introduction 

included wet snow avalanche prediction in their models. Bovis (1977) developed eleven 

wet avalanche forecasting models for the San Juan Mountains in Colorado (continental 

climate (Mock and Birkeland, 2000)) that had an 85% success rate for correctly 

classifying wet avalanche days and an 80% success rate for correctly classifying days 

with no wet avalanches (Table 16).   
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Table 16.  Wet Avalanche Predictor Variables (Bovis, 1977, p.94) 
Author
Model Name 1 2 3 4 5 6 7 8 9 10 11
Variable

Total precip over an N*-day period prior to 
prediction day

X X X X X X X X

Total SWE in the period from 12.00h on the 
day prior to the prediction day and 12.00h 
on the prediciton day

X

Max 6h precip intensity in the period from 
12.00h on the day prior to the prediction day 
and 12.00h on the prediction day

X

Mean 2h air temp over an N*-day period 
prior to the prediction day

X X X

Mean 2h air temp in the period from 12.00h 
on the day prior to the prediction day and 
12.00h on the prediction day

X X X X X

Max 2h air temp in the period from 12.00h 
on the day prior to the prediction day and 
12.00h on the prediciton day

X X X X X X

Mean 6h wind speed over N*-day period 
prior to the prediction day

X

Mean 6h wind speed in the period from 
12.00h on the day prior to the prediction day 
and 12.00h on the prediction day

X X X X X X

Max 6h wind speed in the period from 
12.00h on the day prior to the prediction day 
and 12.00h on the prediction day

X X

Overall Prediction Model Success Rate 80% 80% 78% 86% 83% 85% 86% 100% 81% 64% 84%

Bovis (1977)

 
 
 
Fohn et al., (1977) discussed four prediction models developed on data from 

Weissfluhjoch/Davos, Switzerland (intermountain climate (personal communication M. 

Schneebeli, 2004)), two of which (Model #1 and Model #4) incorporated wet avalanches 

into the model prediction process. The prediction success rate for these models ranged 

from 70% to 80% (Table 17).  Judson and King (1985) developed a model designed to 

predict ‘early season’ and ‘late season’ avalanches for the Colorado Front Range 
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(continental climate (Mock and Birkeland, 2000)). This model was unusual in that it did 

not use typical weather and precipitation data for development, instead, it was based on 

daily avalanche control data collected by the Colorado highway department, a mining 

operation and a ski area.  Rather than predicting the probability for a wet avalanche 

occurrence, this model calculates predictions in terms of a low, moderate, or high 

stability index.  The model was 90% successful in correctly predicting a low, moderate or 

high snowpack stability (Table 17).   

 
Table 17.  Wet Avalanche Predictor Variables (Fohn et al., 1977, p. 377;  
Judson and King) 

Author
Judson and King 

(1985)
Model Name Model 1 Model 4 Stability Index Old Snow New Snow
Variable
Total precipitation (last 24h) X
New fallen snow (last 24h) X X
Water equivalent of new snow (last 24h) X
Maximum 3h precipitation intensity (last 24h) X
Maximum wind-speed for day j (j = 0 to 5 days) X X
Global radiation for day j X
Sunshine hour for day j X X
Cloudiness for day j X X
Maximum air temperature for day j X X
Minimum air temperature for day j X X
Total snow depth for day j X X
Penetration depth of cone penetrometer X
Temperature of snow cover (10cm below surface) X
Number of avalanches on previous day
Snow-drift conditions for day j X
Avalanche control data X
Prediction day minimum air temperature X X
The difference in total snowpack depth between 
the prediction day and two days prior

X

New snow water equivalent accumulation over 
three days prior, two days prior, one day prior 
and the prediction day

X

Overall Prediction Model Success Rate 80% 70-80% 90% 75% 72%

Fohn et al., 
(1977) This Study
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The higher success rates of the previous models may be attributable to the snow 

climate for which the models were designed.  Perhaps wet avalanches in continental 

climates have more robust trends prior to wet avalanche days than intermountain snow 

climates, making them easier to predict.  Success rates may also be better because the 

data quality may have been slightly higher for some studies, a number of outliers may 

have been removed from the datasets, or the inclusion of dry snow avalanche data may 

have increased the success rate. There are three points to consider when comparing the 

greater success rates of the Bovis (1977) models (Table 16) to the success rates of this 

study’s models.  First, the models developed by Bovis were based on just two seasons of 

data.  The small sample sizes used to create the models may skew the results, making 

them appear more successful than they may otherwise be if a longer data record was 

used.  Second, the models were designed with a dataset that has a relatively small number 

of observations and the models use more than two predictor variables resulting in fewer 

degrees of freedom.  Third, the data were obtained from a snow avalanche research site 

where additional instrumentation was available.  The models with the greatest success 

use wind speed and temperature interval data that are not available at Bridger Bowl. 

The two models by Fohn et al. (1977) described in Table 17 also have slightly 

higher, but comparable success rates to the old snow and new snow wet avalanche 

prediction models presented in this study.   The increased success rate is likely due to the 

additional data types that are not available at Bridger Bowl such as precipitation intensity, 

wind speed, global radiation, sunshine hours, cloudiness, cone penetrometer depth, and 

snow temperature.  The stability index model presented in Judson and King (1985) is 
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difficult to compare to this study’s models because the predictions are given in terms of 

low, moderate or high snowpack stability rather than the probability of a wet avalanche 

day.  As mentioned, the data used to create this model are very different from typical 

meteorological, snowpack and avalanche data used in most models.  The 90% success of 

the ‘late season’ predictions may be influenced by dry avalanches that likely make up a 

larger proportion of the total number of avalanches in the dataset.   

 This study takes a unique approach to wet avalanche prediction by considering 

wet avalanches that develop directly after a new snowfall separately from wet avalanches 

that occur after several days of warm spring-like weather.  The results compare well with 

and support observations made by Bridger Bowl ski patrollers who know that wet 

avalanche conditions vary depending on whether it has recently snowed or not. 

There will always be some element of human error that will lower the success rate 

of the old snow and new snow models because the determination of what is and is not a 

wet avalanche is so subjective and each person has their own slightly different definition. 

However, there are several ways in which this model could be improved.  Both models 

may be enhanced by adding net radiation data and wind speed data in order to calculate 

an overall daily energy budget variable into the model.  Whether snow is going to melt or 

not hinges upon how much excess energy is available for snow melt.  The variables used 

to develop the old and new snow models represent a portion of the excess energy that 

relates to temperature (longwave), but as the results indicate, they only provide 

approximately 75% accuracy in the model prediction. If acquiring the instrumentation for 

net radiation data is not feasible, an alternative would be to observe and record daily 
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cloudiness and sunshine hours.  Another important variable that is missing from the 

models is representative snow surface wind speeds.  Turbulent heat exchange at the snow 

surface can have significant effects on snow surface temperature.  Warm Chinook winds 

can cause rapid snowmelt.  Cool winds, even very slight breezes, can cause enough 

evaporative cooling at the snow surface to keep the snow from avalanching (Obled and 

Harder, 1978).  A snow temperature variable may improve the model accuracy, without 

increasing the complexity.  Bridger Bowl has been recording the snowpack temperature 

at 20cm below the snow surface and has been using this temperature as one indicator of 

developing wet avalanche conditions. Unfortunately, the data have not been consistently 

recorded and could not be used in this study, but this type of information could add 

insight as to how effective this predictor is.  Finally, hourly air temperature data may 

prove to be extremely helpful.  The daily maximum and minimum temperatures only 

provide information about a single point in time each day.  Hourly temperature readings 

recorded by a data logger would show how many hours throughout the day and night 

were above and below freezing. 
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CONCLUSION 
 

 
 
 The objective of this study was to develop a practical and useful means of 

predicting springtime wet avalanche conditions for the Bridger Bowl Ski Area in the 

intermountain snow climate of southwest Montana.  The inspiration for this study came 

from discussions with Bridger Bowl ski patrollers who expressed their concern about the 

uncertainties they face during the spring when wet avalanche conditions can develop 

quickly.  Patrollers face the difficult task of deciding when ski area snow conditions are 

becoming too wet and dangerous for skiers.  Wet avalanche conditions are particularly 

problematic because they are difficult to control artificially and the shift from safe wet 

conditions to dangerous wet conditions can happen very quickly.  The West Wide 

Avalanche Network (WWAN) database provides a useful tool for the assessment of wet 

avalanche risk.  This study used Bridger Bowl, Montana weather, snowpack and 

avalanche WWAN records, which date from 1968 to 1995, and Bridger’s archived data 

from 1997-2001.  Bridger Bowl was selected based on its long and thorough records, the 

proximity to its records, terrain and ski safety personnel, and because very few avalanche 

prediction studies have been done in the intermountain snow climate. 

 The focus of this study was on springtime wet avalanche conditions.  The Bridger 

Bowl data from 1968-2001 were restricted to all days in March.  Fifteen meteorological, 

snowpack and precipitation related predictor variables were initially developed based on 

the factors that the past 30 years of research have found to drive the formation of wet 
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snow.  Wet avalanches can occur directly after a new snowfall or on old snow that has 

been on the ground for several days.  Different significant predictor variables were 

expected for ‘new snow’ wet avalanche conditions and ‘old snow’ wet avalanche 

conditions.  ‘New snow’ wet avalanche conditions develop when there has been new 

snowfall within 48 hours or a wet avalanche event.  ‘Old snow’ wet avalanche conditions 

occur when there has not been any new snow for more than 48 hours prior to the 

prediction day.  Since older snow is generally better-bonded than new snow, it was 

anticipated that old snow wet avalanche conditions would require more time and energy 

for development.  To test this idea, ‘one day prior’, ‘two days prior’ and ‘three days 

prior’ variables were incorporated into the predictor variables which increased the total 

number of variables to 68.   

The study was divided into two phases; a hypothesis testing phase and a model 

selection phase. The hypothesis testing phase tested old snow and new snow variables to 

determine which are significant predictors of wet avalanche conditions at Bridger Bowl.  

This phase of the study also determined if and how the significant old snow and new 

snow predictor variables differed from one another.  The hypothesis tests reduced the 

number of old snow predictor variables from 68 to 33 and new snow variables from 68 to 

22.   

Twenty-seven of the 33 significant old snow variables are temperature related, 

and the remaining six variables describe changes in total snow depth and settlement.  

Only twelve of the 22 significant new snow variables are temperature related, three 
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variables describe snowpack settlement, and the remaining seven are precipitation related 

variables that described new snowfall totals, snow water equivalent, and density.   

Old snow wet avalanche conditions tend to begin developing two to three days 

prior to the wet avalanche day (Table 6).   In contrast, new snow wet avalanche 

conditions generally develop much more quickly with warning signs most evident just 

one day prior to a wet avalanche day (Table 7).  The difference in predictor variable 

behavior between wet avalanche days and days with no wet avalanches is quite distinct 

for old snow especially for the temperature variables.  Temperatures generally increase 

rapidly and snowpack depths decrease rapidly prior to an old snow wet avalanche 

occurrence (Table 6, Table 8 and Figs. 20-22). This suggests that most old snow wet 

avalanche conditions develop under warm springtime conditions. Differences in variable 

trends for new snow wet avalanche days and days with no wet avalanches are much less 

distinct.  Temperature variables are only 1°C to 2°C warmer on wet avalanche days 

compared to days with no wet avalanches (Table 7). The main distinction between new 

snow wet avalanche days and days with no wet avalanches lies in the new snowfall 

characteristics where leading day accumulations are greater, wetter and more dense than 

average for wet avalanche conditions (Table 7, Fig. 31and Fig.32).  Mean new snow 

cumulative two day snowfall is about 25cm (8.4cm/day) and cumulative three day 

snowfall totals are 33cm (8.3cm/day) on average.  Old snow cumulative two and three 

day snowfalls are just 2.3cm (0.8cm/day) and 6.9cm (1.7cm/day) respectively (Table 8).    

Temperatures remain fairly cool suggesting that new snow wet avalanche conditions 
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either develop under very mild, moist and cloudy conditions or under sunny conditions 

that develop soon after the precipitation event (Fig. 30 and Fig. 33). 

All of the significant old snow variables (33 total) and the significant new snow 

variables (22 total) were further tested in the model selection phase.  Before the model 

selection process could begin, correlation tests were performed on all old snow and new 

snow significant variables (Table 9 and Table 10).  The purpose of the correlation testing 

was to identify those variables that are too correlated with one another to be included in 

the same model.  All of the significant old snow and new snow variables were then tested 

with binomial logistic regression for their predictive capabilities individually and in 

combination with other variables.  The selection criterion for further testing was based on 

p-values, odds ratios, percent concordant pairs, and the degree of correlation.  Five old 

snow variables and ten new snow variables had the best predictive success and were 

retained for the final model building process (Table 11).  All possible combinations of the 

old snow and new snow variables in Table 11 were tested to determine which 

arrangement resulted in the best binomial logistic regression model.  Model performance 

was ranked primarily on p-values, odds ratios, percent concordant, discordant and tied 

pairs, how consistent the models are when comparing ‘training’ dataset model results 

with ‘testing’ dataset model results, and whether the user will need to use forecasted 

information to calculate the model variables or if that information is readily available.  

The last requirement does not imply that variables with better predictive success were 

discarded because they would be more difficult for the user to calculate.  More elaborate 

variables, or those variables that required more information, were only discarded if there 
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was an alternative, more straight-forward variable that had a comparable predictive 

success rate.  The final old snow and new snow models contain only two predictor 

variables.  Data for each variable are readily available each day and the models will give 

a daily probability for old snow or new snow wet avalanche conditions.  The two models 

are easy-to-use, and provide dependable and practical results that can be readily 

understood by users who may not have a strong statistical background.   

The final old snow model uses the present (prediction day) minimum temperature 

and total snowpack depth change between the prediction day and two days prior to 

calculate a wet avalanche probability.  This model has a 75% overall success rate.  

According to the old snow model’s decision rule (positioned at 57%), any day given a 

predicted probability less than 57% should  be a day with no wet avalanches and any day 

given a predicted probability of 57% or greater should  be a wet avalanche day.  Based on 

this decision rule, the model’s success rates for wet avalanche days and days with no wet 

avalanches were determined.  The old snow model has a 94% success rate for predicting 

accurate probabilities for days with no wet avalanches and a 20% success rate for 

predicting accurate probabilities for days with wet avalanches.  When assessing a 

probability calculated by the old snow model, the user must take into consideration the 

fundamental uncertainties associated with a probabilistic outcome in addition to the 

uncertainties associated with the model’s success rates for wet avalanche days (20%) and 

days with no wet avalanches (94%).  The uncertainties related to the old snow model 

reinforces the importance of comparing the current meteorological and snowpack data 

with historical wet avalanche data.   Wet avalanche indicator graphs were created for 
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easy access to historical old snow wet avalanche data.  These graphs show wet avalanche 

day frequency vs. the day of year (Fig. 11), the prediction day maximum temperature 

(Fig. 20), the prediction day minimum temperature (Fig. 21) and the two day change in 

total snow depth (Fig. 22).  Model users can find additional information about potential 

old snow wet avalanche occurrence when current meteorological and snowpack 

conditions are compared with the historical wet avalanche data provided in these graphs. 

The final new snow wet avalanche prediction model uses the prediction day 

minimum temperature and the cumulative snow water equivalent measured from the 

prediction day to the three days prior to prediction day for its calculations.  This model 

has an overall success rate of 72%.  According to the new snow model’s decision rule 

(positioned at 45%), any day given a predicted probability less than 45% should be a day 

without wet avalanches and any day given a predicted probability of 45% or greater  

should  be a wet avalanche day.  The new snow model’s success rates for wet avalanche 

days and days with no wet avalanches were based on the decision rule described above.  

The new snow model has a 96% success rate for predicting accurate probabilities for days 

with no wet avalanches and a 9% success rate for predicting accurate probabilities for 

days with wet avalanches.  When interpreting a probability calculated by the new snow 

model, the model user must take into consideration the fundamental uncertainties 

associated with a probabilistic outcome in addition to the uncertainties associated the 

model’s success rate for wet avalanche days (9%) and days with no wet avalanches 

(96%).  These uncertainties reinforce the need for additional information about wet 

avalanche occurrence.  Wet avalanche indicator graphs were created for easy access to 
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historical new snow wet avalanche data.  These graphs show wet avalanche frequency vs. 

the prediction day minimum temperature (Fig. 30), the two day cumulative new snow 

depth (Fig. 31), the three day cumulative new snow water equivalent (Fig. 32), and the 

overnight temperature range prior to the prediction day (Fig. 33).  Model users can utilize 

the additional information about potential new snow wet avalanche occurrence when 

current meteorological and snowpack conditions are compared with the historical wet 

avalanche data provided in these graphs. 

The overall predictive success rates of the old and new snow models are 

comparable to average success rates for past and current prediction models.  Most of the 

predictive models that have been developed in the past are deterministic in nature and 

have excluded wet avalanche prediction from their models, focusing entirely on dry snow 

wet avalanche prediction.  Comparing the success rate of this study’s models to dry snow 

prediction models may be misleading, but there are several studies that incorporated wet 

avalanche prediction into their models.  Bovis (1977) developed eleven wet avalanche 

forecasting models for the San Juan Mountains in Colorado (continental climate (Mock 

and Birkeland, 2000)) that had a 85% success rate for correctly classifying wet avalanche 

days and a 80% success rate for correctly classifying days with no wet avalanches. Table 

14 describes the variables used in each model.  Fohn et al. (1977) discussed four 

prediction models developed on data from Weissfluhjoch/Davos, Switzerland 

(intermountain climate (personal communications M. Schneebeli, 2004)), two of which 

incorporated wet avalanches into the model prediction process. The prediction success 

rate for these models ranged from 70% to 80% (Table 15).  Although the old snow and 
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new snow models developed in this study do not have the highest success rates, they do 

compare well with the average success rate attained by most other prediction models.  

Lower success rates may be attributed to the unavailability of certain data types used by 

Bovis (1977) and Fohn et al. (1977). 

Neither model will ever give the user a ‘yes/no’ answer as to whether wet 

avalanche conditions are going to develop.  This leaves the final decision making about 

closures and safety in the hands of the patrollers, where it should be.  The models will 

serve as a useful tool for patrollers to assess the probability of wet avalanche conditions 

at Bridger Bowl based on 32 years of wet avalanche data.  Patrollers can evaluate the 

present day’s wet avalanche danger by considering the model’s predicted probability and 

how the current meteorological and snowpack observations compare with past 

observations made on wet avalanche days. Experienced patrollers can use the model to 

compare their forecast with its predicted wet avalanche probability.  New patrollers can 

use the model as a learning tool to quickly and easily check the accuracy of their own 

forecast with the model’s predicted probability.  Patrollers can also access other historical 

wet avalanche data related to the wet avalanche indicator variables discussed above to 

gain a better understanding of historical wet avalanche activity given the current 

meteorological and snowpack conditions.  The wet avalanche indicator graphs will be 

very helpful when used on days when wet avalanche activity is unexpected.  These 

graphs show that wet avalanches at Bridger Bowl have occurred over a broad range of 

temperatures, snowpack depth change, and precipitation totals (Figs. 11, 20-22 and Figs. 

30-33).  The unexpected wet avalanche is one of the greatest threats to ski area safety, 
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especially at Bridger Bowl where wet avalanches often start in expert ski areas and can 

run out onto heavily used intermediate and beginner level ski runs below.   

The old snow model should be used when there has been no measurable new 

snowfall amounts within the past 48 hours.  The new snow model is appropriate when 

there has been measurable new snowfall amounts within the previous 48 hours.  The 

models were originally developed using Microsoft Excel software, however, the 

algorithms can be computed on any software similar to Excel.  Model procedures are 

outline in Figure 34 and included in Appendix C of this document.  Copies of the original 

dataset spreadsheet used for this study, as well as working versions of the old and new 

snow Excel spreadsheet models and the associated documents are available on a CD from 

the Montana State University Earth Science Department, in Bozeman, Montana.  

Although this model was developed on Bridger Bowl’s March data, its use may 

have value into late February and early April when springtime conditions are most 

common.  Because this model was developed on ski area data where natural and 

artificially released wet avalanches were used to train the models, the use of the models 

should be constrained to Bridger Bowl’s in-bounds ski area.  The models could also be 

tested on other intermountain ski area datasets.  The WWAN has approximately 14 

readily available datasets from ski areas considered to be in the intermountain climate 

regime, six of which have over fifteen years of archived data (Mock and Birkeland, 

2000).   

This study approaches wet avalanche prediction in a new way by focusing on wet 

avalanche prediction for ski area purposes in the intermountain snow climate.  The 32-
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year Bridger Bowl dataset is an unusually long dataset that provides a large amount of 

information on which sound statistical analysis can be performed.  The statistical 

methods are rigorous and use a probabilistic approach to wet avalanche prediction rather 

than a deterministic, or ‘yes/no’ approach.  Unlike previous wet avalanche prediction 

studies, this study does not lump wet avalanche occurrence into one category, but 

investigates wet avalanches that develop under ‘old snow’ conditions and wet avalanches 

that develop under ‘new snow’ conditions as two separate processes.  The results show 

that old snow and new snow wet avalanche condition are indeed very different from one 

another.  This is supported by ski patrol experience at Bridger Bowl Ski Area. 
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“DEFINITIONS” 
 
The following provide definitions for the datasets, response variables, and predictor 
variables described in this study.  The equation used to calculate each variable is included 
as well. 
 
THE DATASETS 
  
Original Dataset 
Includes all days in March from 1968-2001.  This dataset includes both old and new 
snow avalanche days. March, 1996 data were missing from the Bridger Bowl archives 
and is not included in this analysis. 
 
New Snow Dataset 
Includes all days in March from 1968-2001when there was new snow recorded the 
prediction day and/or one day prior to the prediction day.  In other words, the age of the 
new snow in this dataset is less than 48 hours.  This dataset was created to determine if 
there are different significant meteorological, snowpack and precipitation predictor 
variables for wet avalanches that occur directly after a new snowfall. These avalanches 
will be referred to as ‘new snow wet avalanches’. 
 
Old Snow Dataset 
Includes all days in March from 1968-2001 when there was no new snow recorded on the 
prediction day or one day prior to the prediction day.  The most recent snowfall in this 
dataset would have occurred two days prior to the prediction day. The age of the new 
snow in this dataset is greater than 48 hours.  This dataset was created to determine if 
there are different significant meteorological, snowpack and precipitation predictor 
variables for wet avalanches that occur on old snow. These avalanches will be referred to 
as ‘old snow wet avalanches’. 

 

 
THE DATA 
 
All avalanches in the datasets and variables refer to wet avalanches. All avalanche sizes 
(1-5) are ranked based on the U.S. avalanche recording scale.  
“The sizes are based on an estimate of the volume of snow transported down the 
avalanche path: 
1 = sluff or snowslide <50m of slow distance regardless of snow volume 
2 = small, relative to path 
3 = medium, relative to path 
4 = large, relative to path 
5 = major or maximum, relative to path” 
(McClung and Schaerer, 1993).    
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All meteorological and snowpack data, except wind speed and direction, were recorded at 
the Bridger Bowl weather station, located near the top of the Alpine Lift.  All 
temperatures are recorded in Fahrenheit and converted to Celsius.  All depths are 
measured in inches and converted to centimeters.  All directions are presented in compass 
degrees.  All of the variables are recorded over a 24 hour observation period and are 
recorded daily by ski patrollers in the morning hours, generally between 6-9am. 
 
The two datasets (“New Snow Dataset” and “Old Snow Dataset”) and the variables 
within each dataset that are defined below are calculated in terms of “Prediction Day”, “1 
Day Prior”, “2 Days Prior” and “3 Days Prior”.   
 
“Prediction Day” always refers to the day that the 1 Day Prior, 2 Days Prior and 3 Days 
Prior variables lead up to and is given the subscript “0”.  A prediction day may or may 
not have recorded wet avalanches.  
 
“One Day Prior” always refers to the day that is one day prior to the prediction day and is 
given the subscript “-1”. 
 
“Two Days Prior” always refers to the day that is two days prior to the prediction day and 
is given the subscript “-2”. 
 
“Three Days Prior” always refers to the day that is three days prior to the prediction day 
and is given the subscript “-3”. 
 
The number of subscripts next to a variable name indicates what ‘prior’ days are included 
in the cumulative variable. Some variables are single-day measurements such as MaxT0, 
MaxT-1, MaxT-2, and MaxT-3.  Others are cumulative measurements such as   
AvgMaxT0,-1, AvgMaxT0,-1,-2, and AvgMaxT0,-1,-2,-3. 
 
Refer to Figure 3 in the main text of this report for additional details. 

 

 
THE RESPONSE VARIABLES 
 
AvyDay 
Wet Avalanche Day 
0 = no wet avalanches were recorded on the prediction day 
1 = one or more wet avalanches were recorded on the prediction day 
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THE PREDICTOR VARIABLES 
 
Day 
Day of the year number.  If January 1st is the day one of a calendar year, then March 1st is 
the day 60 of the year, or day 61 if it is a leap year. 
 
MaxT0 

Prediction Day Maximum Temperature.  The maximum temperature recorded on the 
prediction day. 
 
MaxT-1 

One Day Prior Maximum Temperature.  The maximum temperature recorded one day 
prior to the prediction day. 
 
MaxT-2 
Two Days Prior Maximum Temperature.  The maximum temperature recorded two days 
prior to the prediction day. 
 
MaxT-3 
Three Days Prior Maximum Temperature.  The maximum temperature recorded three 
days prior to the prediction day. 
 
AvgMaxT0,-1 

One Day Averaged Maximum Temperature.  The average maximum temperature for the 
prediction day and one day prior to the prediction day. 
Calculation:  AvgMaxT0,-1 = (MaxT0 + MaxT-1) ÷ 2 
 
AvgMaxT0,-1,-2 
Two Day Averaged Maximum Temperature.  The average maximum temperature for the 
prediction day, one day prior to the prediction day and two days prior to the prediction 
day. 
Calculation:  AvgMaxT0,-1,-2 = (MaxT0 + MaxT-1 + MaxT-2) ÷ 3 
 
AvgMaxT0,-1,-2,-3 

Three Day Averaged Maximum Temperature.  The average maximum temperature for 
the prediction day, one day prior to the prediction day, two days prior to the prediction 
day and three days prior to the prediction day. 
Calculation:  AvgMaxT0,-1,-2,-3 = (MaxT0 + MaxT-1 + MaxT-2 + MaxT-3) ÷ 4 
 
MinT0 

Prediction Day Minimum Temperature.  The minimum temperature recorded on the 
prediction day. 
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MinT-1 

One Day Prior Minimum Temperature. The minimum temperature recorded one day prior 
to the prediction day. 
 
MinT-2 
Two Days Prior Minimum Temperature.  The minimum temperature recorded two days 
prior to the prediction day. 
 
MinT-3 

Three Days Prior Minimum Temperature.  The minimum temperature recorded three 
days prior to the prediction day. 
 
AvgMinT0,-1 

One Day Averaged Minimum Temperature.  The average minimum temperature for the 
prediction day and one day prior to the prediction day. 
Calculation:  AvgMinT0,-1 = (MinT0 + MintT-1) ÷ 2 
 
AvgMinT0,-1,-2 
Two Day Averaged Minimum Temperature.  The average minimum temperature for the 
prediction day, one day prior to the prediction day and two days prior to the prediction 
day. 
Calculation:  AvgMinT0,-1,-2 = (MinT0 + MintT-1 + MinT-2) ÷ 3 
 
AvgMinT0,-1,-2,-3 

Three Day Averaged Minimum Temperature.  The average minimum temperature for the 
prediction day, one day prior to the prediction day, two days prior to the prediction day 
and three days prior to the prediction day. 
Calculation:  AvgMinT0,-1,-2,-3 = (MinT0 + MintT-1 + MinT-2 + MinT-3) ÷ 4 
 
AvgT0 
Prediction Day Average Temperature.  The average temperature recorded on the 
prediction day. 
Calculation:  AvgT0 = (MaxT0 + MinT0) ÷ 2 
 
AvgT-1 
One Day Prior Average Temperature. The average temperature recorded one day prior to 
the prediction day. 
Calculation:  AvgT-1 = (MaxT-1 + MinT-1) ÷ 2 
 
AvgT-2 
Two Days Prior Average Temperature.  The average temperature recorded two days prior 
to the prediction day. 
Calculation:  AvgT-2 = (MaxT-2 + MinT-2) ÷ 2 
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AvgT-3 
Three Days Prior Average Temperature.  The average temperature recorded three days 
prior to the prediction day (not cumulative). 
Calculation:  AvgT-3 = (MaxT-3 + MinT-3) ÷ 2 
 
AvgAvgT0,-1 

One Day Averaged Average Temperature.  The averaged average temperature for the 
prediction day and one day prior to the prediction day. 
Calculation:  AvgAvgT0,-1 = (AvgT0 + AvgT-1) ÷ 2 
 
AvgAvgT0,-1,-2 
Two Day Averaged Average Temperature.  The averaged average temperature for the 
prediction day, one day prior to the prediction day and two days prior to the prediction 
day. 
Calculation:  AvgAvgT0,-1,-2 = (AvgT0 + AvgT-1 + AvgT-2) ÷ 3 
 
AvgAvgT0,-1,-2,-3 

Three Day Averaged Average Temperature.  The averaged average temperature for the 
prediction day, one day prior to the prediction day, two days prior to the prediction day 
and three days prior to the prediction day. 
Calculation:  AvgAvgT0,-1,-2,-3 = (AvgT0 + AvgT-1 + AvgT-2 + AvgT-3)÷ 4 
 
DDMaxT0 

Prediction Day Degree Day Maximum Temperature.  The calculated number of degree 
days using the prediction day maximum temperature where degree day is defined as a 
departure of one degree per day in the daily maximum temperature from an adopted 
reference temperature (0°C) (Rango and Martinec, 1995). 
Calculation: DDMaxT0 = MaxT0 - 0°C 
 
DDMaxT0,-1 
One Day Prior Degree Day Maximum Temperature.  The cumulative number of degree 
days occurring one day prior to the prediction day and the prediction day using maximum 
temperature. 
Calculation: DDMaxT0,-1 = (MaxT0 - 0°C) + (MaxT-1 - 0°C) 
 
DDMaxT0,-1,-2 

Two Days Prior Degree Day Maximum Temperature.  The cumulative number of degree 
days occurring two days prior to the prediction day, one day prior to the prediction day 
and the prediction day using maximum temperature. 
Calculation: DDMaxT0,-1,-2 = (MaxT0 - 0°C) + (MaxT-1 - 0°C) + (MaxT-2 -0°C) 
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DDMaxT0,-1,-2,-3 
Three Days Prior Degree Day Maximum Temperature.  The cumulative number of 
degree days occurring three days prior to the prediction day, two days prior to the 
prediction day, one day prior to the prediction day and the prediction day using maximum 
temperature. 
Calculation:  
DDMaxT0,-1,-2,-3 = (MaxT0 - 0°C)+(MaxT-1 - 0°C)+(MaxT-2 -0°C)+(MaxT-3 - 0°C) 
 
DDAvgT0 

Prediction Day Degree Day Average Temperature.  The calculated number of degree 
days using the prediction day average temperature where degree day is defined as a 
departure of one degree per day in the daily mean temperature from an adopted reference 
temperature (0°C) (Rango and Martinec 1995). 
Calculation: DDAvgT0 = AvgT0 - 0°C 
 
DDAvgT0,-1 
One Day Prior Degree Day Average Temperature.  The cumulative number of degree 
days occurring one day prior to the prediction day and the prediction day using average 
temperature. 
Calculation: DDAvgT0,-1 = (AvgT0 - 0°C) + (AgT-1 - 0°C) 
 
DDAvgT0,-1,-2 
Two Days Prior Degree Day Average Temperature.  The cumulative number of degree 
days occurring two days prior to the prediction day, one day prior to the prediction day 
and the prediction day using average temperature. 
Calculation: DDAvgT0,-1,-2 = (AvgT0 - 0°C)+(AgT-1 - 0°C)+(AvgT-2 -0°C) 
 
DDAvgT0,-1,-2,-3 

Three Days Prior Degree Day Average Temperature.  The cumulative number of degree 
days occurring three days prior to the prediction day, two days prior to the prediction day, 
one day prior to the prediction day and the prediction day using average temperature. 
Calculation:  
DDAvgT0,-1,-2-3 = (AvgT0 - 0°C)+(AvgT-1 - 0°C)+(AvgT-2 -0°C)+(AvgT-3 - 0°C) 

MaxT0 – MaxT-1 

Maximum temperature difference between the prediction day and one day prior. 
Calculation:  MaxT0 – MaxT-1 
 
MaxT0 – MaxT-2 
Maximum temperature difference between the prediction day and two days prior. 
Calculation:  MaxT0 – MaxT-2 
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MaxT0 – MaxT-3 
Maximum temperature difference between the prediction day and three days prior. 
Calculation:  MaxT0 – MaxT-3 

 
MinT0 – MinT-1 

Minimum temperature difference between the prediction day and one day prior. 
Calculation:  MinT0 – MinT-1 

 
MinT0 – MinT-2 

Minimum temperature difference between the prediction day and two days prior. 
Calculation:  MinT0 – MinT-2 

 
MinT0 – MinT-3 

Minimum temperature difference between the prediction day and three days prior. 
Calculation:  MinT0 – MinT-3 

 
AvgT0 – AvgT-1 

Average temperature difference between the prediction day and one day prior. 
Calculation:  AvgT0 – AvgT-1 

 
AvgT0 – AvgT-2 

Average temperature difference between the prediction day and two days prior. 
Calculation:  AvgT0 – AvgT-2 

 
AvgT0 – AvgT-3 

Average temperature difference between the prediction day and three days prior. 
Calculation:  AvgT0 – AvgT-3 

MaxT0 – MinT0 
Prediction day day-time (and occasionally night-time) temperature range. 
Calculation:  MaxT0 – MinT0 

MaxT-1 – MinT-1 
One day prior day-time (and occasionally night-time) temperature range. 
Calculation:  MaxT-1 – MinT-1 

MaxT-2 – MinT-2 
Two days prior day-time (and occasionally night-time) temperature range. 
Calculation:  MaxT-2 – MinT-2 

MaxT-3 – MinT-3 
Three days prior day-time (and occasionally night-time) temperature range. 
Calculation:  MaxT-3 – MinT-3 
 



145 

MaxT-1 – MinT0 

Prediction Day Overnight Temperature Range. The overnight (and occasionally day-
time) temperature range occurring the night before the prediction day. 
Calculation:  MaxT-1 – MinT0 

 
MaxT-2 – MinT-1 

One Day Prior Overnight Temperature Range. The overnight (and occasionally day-time) 
temperature range occurring the night before the one day prior day. 
Calculation:  MaxT-2 – MinT-1 

 
MaxT-3 – MinT-2 

Two Days Prior Overnight Temperature Range. The overnight (and occasionally day-
time) temperature range occurring the night before the two days prior day. 
Calculation:  MaxT-3 – MinT-2 

 
HS0 

Prediction Day Total Snow Depth.  The total snow depth measured on the prediction day. 
 
HS-1 

One Day Prior Total Snow Depth.  The total snow depth measured one day prior to the 
prediction day. 
 
HS-2 
Two Days Prior Total Snow Depth.  The total snow depth measured two days prior to the 
prediction day. 
 
HS-3 
Three Days Prior Total Snow Depth.  The total snow depth measured three days prior to 
the prediction day. 
 
HS0 – HS-1 

One Day Total Change in Snow Depth.  The change in total snow depth from one day 
prior, to the prediction day. Takes into account both the addition of new snow, the overall 
settlement of the snowpack and other factors such as ablation that might contribute to the 
overall change in total snow depth. 
Calculation:  HS0 – HS-1 

 
HS0 – HS-2 
Two Day Total Change in Snow Depth.  The change in total snow depth from two days 
prior, to the prediction day.  Takes into account both the addition of new snow, the 
overall settlement of the snowpack and other factors such as ablation that might 
contribute to the overall change in total snow depth. 
Calculation:  HS0 – HS-2 
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HS0 – HS-3 
Three Day Change in Total Snow Depth.  The change in total snow depth from three days 
prior, to the prediction day. Takes into account both the addition of new snow, the overall 
settlement of the snowpack and other factors such as ablation that might contribute to the 
overall change in total snow depth. 
Calculation:  HS0 – HS-3 

 
HN0 

Prediction Day New Snow Depth.  The amount of new snow that was measured on the 
prediction day. 
 
HN0,-1 
One Day Cumulative New Snow Depth.  The sum of the new snow that was measured on 
the prediction day and one day prior to the prediction day. 
Calculation:  HN0,-1 = HN0 + HN-1 

 
HN0,-1,-2 
Two Day Cumulative New Snow Depth.  The sum of the new snow that was measured on 
the prediction day, one day prior to the prediction day, and two days prior to the 
prediction day. 
Calculation:  HN0,-1,-2 = HN0 + HN-1 + HN-2 

 
HN0,-1,-2,-3 
Three Day Cumulative New Snow Depth.  The sum of the new snow that was measured 
on the prediction day, one day prior to the prediction day, two days prior to the prediction 
day, and three days prior to the prediction day. 
Calculation:  HN0,-1,-2,-3 = HN0 + HN-1 + HN-2 + HN-3 

 
Stl0,-1 

One Day Settlement.  This is a derived measurement of how much the total snowpack has 
settled between one day prior to the prediction day and the prediction day.  It is the 
difference between the prediction day total snow depth, the one day prior total snow 
depth and the new snow measured on the prediction day.  Settlement in this case 
represents the combined effect of all factors that lead to the decrease in total snow pack 
depth such as melt, densification and ablation.  
Calculation:  Stl0,-1 = HS0 – HS-1 – HN0 

 
Stl0,-1,-2 
Two Day Settlement.  This is a derived measurement of how much the total snowpack 
has settled between two days prior to the prediction day and the prediction day.  It is the 
difference between the prediction day total snow depth, the two days prior total snow 
depth, the new snow measured on the prediction day, and the new snow measured one 
day prior to prediction day.   
Calculation:  Stl0,-1,-2 = HS0 – HS-2 – HN0 – HN-1 
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Stl0,-1,-2,-3 
Three Day Settlement.  This is a derived measurement of how much the total snowpack 
has settled between three days prior to the prediction day and the prediction day.  It is the 
difference between the prediction day total snow depth, the three days prior total snow 
depth, the new snow measured on the prediction day, the new snow measured one day 
prior to prediction day and the new snow measured two days prior to the prediction day.   
Calculation:  Stl0,-1,-2,-3 = HS0 – HS-3 – HN0 – HN-1 – HN-2 

 
HNA0 

Age of Prediction Day New Snow.  For the “New Snow Dataset” and the “Old Snow 
Dataset” the value of this variable reflects the number of days the new snow has been on 
the ground.  For example, snow that fell on the prediction day is 0 days old and snow that 
fell one day prior to the prediction day is 1 day old.   
 
For the “Original Dataset”, this is a categorical variable where 0 = new snow and 1 = old 
snow.  New snow is snow that is less than 48 hours in age.  Old snow is snow that is 
more than 48 hours in age. For example, new snow measured on the prediction day or 
one day prior to the prediction day is considered ‘new snow’.  If there was no new snow 
recorded on the prediction day and no new snow recorded one day prior to the prediction 
day, the most recent new snowfall would have occurred two days prior to the prediction 
day.  Any new snow measured two or more days prior to the prediction day is considered 
‘old snow’. 
 
HNA-1 
Age of One Day Prior New Snow.  For the “New Snow Dataset” and the “Old Snow 
Dataset” the value of this variable reflects the number of days the new snow has been on  
the ground.  For example, snow that fell one day prior to the prediction day is 0 days old 
and snow that fell two days prior to the prediction day is 1 day old.   
 
For the “Original Dataset”, this is a categorical variable where 0 = new snow and 1 = old 
snow.  New snow is snow that is less than 48 hours in age.  Old snow is snow that is 
more than 48 hours in age. For example, new snow measured on the prediction day or 
one day prior to the prediction day is considered ‘new snow’.  If there was no new snow 
recorded on the prediction day and no new snow recorded one day prior to the prediction 
day, the most recent new snowfall would have occurred two days prior to the prediction 
day.  Any new snow measured two or more days prior to the prediction day is considered 
‘old snow’. 
 
HNA-2 
Age of Two Days Prior New Snow.  For the “New Snow Dataset” and the “Old Snow 
Dataset”  the value of this variable reflects the number of days the new snow has been on 
the ground.  For example, snow that fell two days prior to the prediction day is 0 days old 
and snow that fell three days prior to the prediction day is 1 day old.   
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For the “Original Dataset”, this is a categorical variable where 0 = new snow and 1 = old 
snow.  New snow is snow that is less than 48 hours in age.  Old snow is snow that is 
more than 48 hours in age. For example, new snow measured on the prediction day or 
one day prior to the prediction day is considered ‘new snow’.  If there was no new snow 
recorded on the prediction day and no new snow recorded one day prior to the prediction 
day, the most recent new snowfall would have occurred two days prior to the prediction 
day.  Any new snow measured two or more days prior to the prediction day is considered 
‘old snow’. 
 
HNA-3 
Age of Three Days Prior New Snow. For the “New Snow Dataset” and the “Old Snow 
Dataset” the value of this variable reflects the number of days the new snow has been on 
the ground.  For example, snow that fell three days prior to the prediction day is 0 days 
old and snow that fell four days prior to the prediction day is 1 day old.   
 
For the “Original Dataset”, this is a categorical variable where 0 = new snow and 1 = old 
snow.  New snow is snow that is less than 48 hours in age.  Old snow is snow that is 
more than 48 hours in age. For example, new snow measured on the prediction day or 
one day prior to the prediction day is considered ‘new snow’.  If there was no new snow 
recorded on the prediction day and no new snow recorded one day prior to the prediction 
day, the most recent new snowfall would have occurred two days prior to the prediction 
day.  Any new snow measured two or more days prior to the prediction day is considered 
‘old snow’. 
 
HNW0 

Prediction Day New Snow Water Equivalent (SWE).  The new snow SWE measured on 
the prediction day. 
 
HNW0,-1 
One Day Cumulative New SWE.  The sum of the new snow SWE measured on the 
prediction day and one day prior to the prediction day. 
Calculation:  HNW0,-1 = HNW0 + HNW-1 

 
HNW0,-1,-2 
Two Day Cumulative New Snow SWE.  The sum of the new snow SWE measured on the 
prediction day, one day prior to the prediction day and two days prior to the prediction 
day. 
Calculation:  HNW0,-1-2 = HNW0 + HNW-1 + HNW-2 
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HNW0,-1,-2,-3 
Three Day Cumulative New Snow SWE.  The sum of the new snow SWE measured on 
the prediction day, one day prior to the prediction day, two days prior to the prediction 
day and three days prior to the prediction day. 
Calculation:  HNW0,-1,-2,-3 = HNW0 + HNW-1 + HNW-2 + HNW-3 

 
HND0 

Prediction Day New Snow Density.  The new snow density calculated from the new 
snow and SWE measured on the prediction day. 1000kg/m3 is the density of liquid water. 
Calculation:  HND0 = (HNW0 * 1000kg/m3) ÷ HN0 

 
HND0,-1 
One Day Cumulative New Snow Density.  The sum of the prediction day new snow 
density and one day prior new snow density calculated from the prediction day and one 
day prior SWE and new snow measurements. 1000kg/m3 is the density of liquid water. 
Calculation:  HND0,-1 =  HND0 +(HNW-1 *1000kg/m3) ÷ HN-1 

 
HND0,-1,-2 
Two Day Cumulative New Snow Density. The sum of the prediction day, one day prior 
and two days prior new snow densities calculated from the prediction day, one day prior 
and two days prior SWE and new snow measurements.  1000kg/m3 is the density of 
liquid water. 
Calculation:  HND0,-1,-2 = HND0 + HND-1 + (HNW-2 * 1000kg/m3) ÷ HN-2 

 
HND0,-1,-2,-3 
Three Day Cumulative New Snow Density.  The sum of the prediction day, one day 
prior, two days prior and three days prior new snow densities calculated from the 
prediction day, one day prior, two days prior and three days prior SWE and new snow 
measurements.  1000kg/m3 is the density of liquid water. 
Calculation:  HND0,-1,-2,-3 = HND0 + HND-1 + HND-2 + (HNW-3 * 1000kg/m3) ÷ HN-3 
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“DESCRIPTIVE STATISTICS”  
 
The following plots provide basic descriptive statistics and charts for each predictor 
variable prior to any changes to the original Bridger Bowl dataset 
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  6.1098

  2.1339

 20.0000
  5.6000
  1.7000
 -2.2000
-20.0000

1038
-4.1E-02
4.22E-03
34.1855
5.84683
1.77775

0.003
1.247

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

18126-0-6-12-18

95% Confidence Interval for Mu

2.01.51.0

95% Confidence Interval for Median

Variable: MaxT(-1)

  1.1000

  5.5966

  1.3279

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  2.2000

  6.0996

  2.0386

 19.4000
  5.6000
  1.7000
 -2.2000
-20.0000

1039
-9.9E-02
-1.9E-02
34.0730
5.83720
1.68325

0.005
1.152

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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18126-0-6-12-18

95% Confidence Interval for Mu

2.01.51.0

95% Confidence Interval for Median

Variable: MaxT(-1)

  1.1000

  5.5966

  1.3279

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  2.2000

  6.0996

  2.0386

 19.4000
  5.6000
  1.7000
 -2.2000
-20.0000

1039
-9.9E-02
-1.9E-02
34.0730
5.83720
1.68325

0.005
1.152

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

18126-0-6-12-18

95% Confidence Interval for Mu

2.01.51.0

95% Confidence Interval for Median

Variable: MaxT(-3)

  1.1000

  5.6074

  1.2923

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  2.2000

  6.1112

  2.0040

 19.4000
  5.6000
  1.7000
 -2.2000
-20.0000

1040
-1.5E-01
-3.4E-02
34.2041
5.84843
1.64817

0.002
1.281

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

18126-0-6-12-18

95% Confidence Interval for Mu

2.01.51.0

95% Confidence Interval for Median

Variable: MaxT(-2)

  1.1000

  5.6007

  1.3064

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  2.2000

  6.1042

  2.0176

 19.4000
  5.6000
  1.7000
 -2.2000
-20.0000

1039
-1.2E-01
-2.6E-02
34.1237
5.84155
1.66198

0.004
1.204

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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1383-2-7-12-17

95% Confidence Interval for Mu

2.11.61.1

95% Confidence Interval for Median

Variable: AvgMaxT(0,-1)

  1.1000

  5.1190

  1.3925

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  2.0000

  5.5808

  2.0449

 16.2000
  5.2250
  1.7000
 -1.7000
-18.6000

1032
-3.6E-02
-2.0E-02
28.5140
5.33985
1.71870

0.025
0.878

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

1272-3-8-13

95% Confidence Interval for Mu

2.01.61.2

95% Confidence Interval for Median

Variable: AvgMaxT(0,-1,-2)

  1.1000

  4.7727

  1.3762

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  1.7000

  5.2046

  1.9862

 15.5000
  5.0500
  1.5000
 -1.6250
-15.2000

1026
-3.9E-02
-9.3E-03
24.7927
4.97922
1.68119

0.014
0.979

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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-11 -6 -1 4 9 14

95% Confidence Interval for Mu

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

95% Confidence Interval for Median

Variable:
AvgMaxT(0,-1,-2,-3)

A-Squared:
P-Value:

Mean
StDev
Variance
Skewness
Kurtosis
N

Minimum
1st Quartile
Median
3rd Quartile
Maximum

  1.3739

  4.5240

  1.1000

1.072
0.008

1.66376
4.72028
22.2810

6.80E-04
-1.1E-01

1021

-13.4000
 -1.5000
  1.5000
  4.7000
 14.9000

  1.9536

  4.9344

  1.8000

Anderson-Darling Normality Test

95% Confidence Interval for Mu

95% Confidence Interval for Sigma

95% Confidence Interval for Median

Descriptive Statistics

61-4-9-14-19-24

95% Confidence Interval for Mu

-6.6-7.1-7.6-8.1

95% Confidence Interval for Median

Variable: MinT(0)

 -7.8000

  4.9213

 -8.1444

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -6.7000

  5.3642

 -7.5188

  5.6000
 -4.4000
 -7.3000
-11.1000
-26.1000

1037
0.614920
-5.8E-01
26.3493
 5.13315
-7.83163

0.000
5.046

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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61-4-9-14-19-24

95% Confidence Interval for Mu

-6.8-7.3-7.8-8.3

95% Confidence Interval for Median

Variable: MinT(-1)

 -7.8000

  4.9596

 -8.2298

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -6.7000

  5.4056

 -7.5997

  5.6000
 -4.4000
 -7.5500
-11.1000
-26.1000

1038
0.533425
-5.7E-01
26.7595
 5.17296
-7.91474

0.000
5.181

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

61-4-9-14-19-24

95% Confidence Interval for Mu

-6.8-7.3-7.8-8.3

95% Confidence Interval for Median

Variable: MinT(-2)

 -7.8000

  4.9543

 -8.2888

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -6.7000

  5.3999

 -7.6594

  5.6000
 -4.4000
 -7.8000
-11.1000
-26.1000

1038
0.480964
-5.8E-01
26.7025
 5.16745
-7.97408

0.000
5.221

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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61-4-9-14-19-24

95% Confidence Interval for Mu

-6.8-7.3-7.8-8.3

95% Confidence Interval for Median

Variable: MinT(-3)

 -7.8000

  4.8935

 -8.2841

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -6.7000

  5.3333

 -7.6627

  5.6000
 -4.4000
 -7.8000
-11.1000
-26.1000

1039
0.419797
-5.6E-01
26.0496
 5.10388
-7.97344

0.000
4.998

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

2-3-8-13-18-23

95% Confidence Interval for Mu

-7.2-7.7-8.2

95% Confidence Interval for Median

Variable: AvgMinT(0,-1)

 -7.8000

  4.4860

 -8.1885

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -7.2000

  4.8910

 -7.6162

  3.9000
 -4.8000
 -7.3000
-10.6000
-25.3000

1030
0.578029
-5.6E-01
21.8996
 4.67970
-7.90233

0.000
4.603

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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0-4-8-12-16-20-24

95% Confidence Interval for Mu

-7.2-7.7-8.2

95% Confidence Interval for Median

AvgMinT(0,-1,-2)
Variable:

 -7.8000

  4.1627

 -8.1965

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -7.2000

  4.5399

 -7.6636

  2.2000
 -5.0000
 -7.5000
-10.6000
-24.6000

1023
0.499273
-5.2E-01
18.8625
 4.34310
-7.93001

0.000
4.351

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

1-3-7-11-15-19-23

95% Confidence Interval for Mu

-7.50-7.75-8.00-8.25

95% Confidence Interval for Median

AvgMinT(0,-1,-2,-3)
Variable:

 -7.8000

  3.9144

 -8.2161

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -7.4000

  4.2702

 -7.7135

  1.8000
 -5.2500
 -7.5000
-10.3000
-23.7000

1017
0.402832
-4.7E-01
16.6830
 4.08448
-7.96480

0.000
3.782

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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94-1-6-11-16-21

95% Confidence Interval for Mu

-2.4-2.9-3.4

95% Confidence Interval for Median

Variable: AvgT(0)

 -3.1000

  4.8878

 -3.3484

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.3000

  5.3276

 -2.7270

 10.6000
  0.6000
 -2.8000
 -6.7000
-22.8000

1037
0.266537
-3.2E-01
25.9918
 5.09821
-3.03770

0.006
1.140

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

94-1-6-11-16-21

95% Confidence Interval for Mu

-2.5-3.0-3.5

95% Confidence Interval for Median

Variable: AvgT(-1)

 -3.4000

  4.9077

 -3.4390

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.3000

  5.3491

 -2.8155

 10.6000
  0.3000
 -2.8000
 -6.7000
-22.8000

1038
0.220065
-3.3E-01
26.2023
 5.11882
-3.12726

0.003
1.262

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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94-1-6-11-16-21

95% Confidence Interval for Mu

-2.5-3.0-3.5

95% Confidence Interval for Median

Variable: AvgT(-2)

 -3.4000

  4.9092

 -3.4797

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.3000

  5.3507

 -2.8560

 10.6000
  0.3000
 -2.8000
 -6.7000
-22.8000

1038
0.166333
-3.5E-01
26.2184
 5.12039
-3.16782

0.001
1.437

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

94-1-6-11-16-21

95% Confidence Interval for Mu

-2.5-3.0-3.5

95% Confidence Interval for Median

Variable: AvgT(-3)

 -3.4000

  4.8884

 -3.4846

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.3000

  5.3278

 -2.8638

 10.6000
  0.3000
 -2.8000
 -6.7000
-22.8000

1039
0.132413
-3.4E-01
25.9956
 5.09858
-3.17421

0.001
1.399

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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61-4-9-14-19

95% Confidence Interval for Mu

-2.5-2.6-2.7-2.8-2.9-3.0-3.1-3.2-3.3-3.4

95% Confidence Interval for Median

Variable: AvgAvgT(0,-1)

 -3.2000

  4.5159

 -3.3770

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.5000

  4.9237

 -2.8009

  9.0000
  0.2000
 -2.8000
 -6.1000
-21.1000

1030
0.287289
-3.4E-01
22.1929
 4.71094
-3.08893

0.013
0.993

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

72-3-8-13-18

95% Confidence Interval for Mu

-2.65-2.75-2.85-2.95-3.05-3.15-3.25-3.35-3.45

95% Confidence Interval for Median

AvgAvgT(0,-1,-2)
Variable:

 -3.3000

  4.2285

 -3.3959

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.7000

  4.6117

 -2.8546

  7.6000
  0.0000
 -3.0000
 -5.9000
-19.9000

1023
0.243517
-3.2E-01
19.4632
 4.41171
-3.12522

0.008
1.076

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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73-1-5-9-13-17

95% Confidence Interval for Mu

-2.85-2.95-3.05-3.15-3.25-3.35-3.45

95% Confidence Interval for Median

AvgAvgT(0,-1,-2,-3)
Variable:

 -3.3000

  3.9985

 -3.4041

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.9000

  4.3619

 -2.8907

  7.2000
 -0.1500
 -3.1000
 -5.9000
-18.3000

1017
0.153065
-3.0E-01
17.4077
 4.17225
-3.14739

0.014
0.973

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

20124-4-12-20

95% Confidence Interval for Mu

2.01.51.0

95% Confidence Interval for Median

Variable: DDMaxT(0)

  1.1000

  5.6057

  1.4216

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  2.2000

  6.1098

  2.1339

 20.0000
  5.6000
  1.7000
 -2.2000
-20.0000

1038
-4.1E-02
4.22E-03
34.1855
5.84683
1.77775

0.003
1.247

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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30.017.55.0-7.5-20.0-32.5

95% Confidence Interval for Mu

4.23.22.2

95% Confidence Interval for Median

Variable: DDMaxT(0,-1)

  2.2000

 10.2088

  2.7776

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  3.9000

 11.1297

  4.0786

 32.3000
 10.4000
  3.3000
 -3.4000
-37.2000

1032
-2.4E-02
-1.8E-02
113.407
10.6493
 3.4281

0.018
0.931

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

47.535.022.510.0-2.5-15.0-27.5-40.0

95% Confidence Interval for Mu

6.25.24.23.2

95% Confidence Interval for Median

DDMaxT(0,-1,-2)
Variable:

  3.4000

 14.3183

  4.1280

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  5.0884

 15.6139

  5.9582

 46.6000
 15.2000
  4.4000
 -4.9250
-45.6000

1026
-4.0E-02
-8.8E-03
223.140
14.9379
 5.0431

0.015
0.965

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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503010-10-30-50

95% Confidence Interval for Mu

8765

95% Confidence Interval for Median

DDMaxT(0,-1,-2,-3)
Variable:

  4.5000

 18.0670

  5.4814

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  7.2300

 19.7060

  7.7967

 59.4000
 18.9000
  6.1000
 -6.1000
-53.4000

1021
-1.0E-01
1.81E-03
355.349
18.8507
 6.6391

0.008
1.072

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

94-1-6-11-16-21

95% Confidence Interval for Mu

-2.4-2.9-3.4

95% Confidence Interval for Median

Variable: DDAvgT(0)

 -3.1000

  4.8878

 -3.3484

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.3000

  5.3276

 -2.7270

 10.6000
  0.6000
 -2.8000
 -6.7000
-22.8000

1037
0.266537
-3.2E-01
25.9918
 5.09821
-3.03770

0.006
1.140

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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122-8-18-28-38

95% Confidence Interval for Mu

-5.0-5.5-6.0-6.5

95% Confidence Interval for Median

Variable: DDAvgT(0,-1)

 -6.4000

  9.0299

 -6.7541

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -5.0000

  9.8452

 -5.6022

 17.9000
  0.3000
 -5.6000
-12.2000
-42.3000

1030
0.292612
-3.4E-01
88.7327
 9.41981
-6.17816

0.013
0.987

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

20.07.5-5.0-17.5-30.0-42.5-55.0

95% Confidence Interval for Mu

-8-9-10

95% Confidence Interval for Median

DDAvgT(0,-1,-2)
Variable:

-10.0000

 12.6843

-10.1911

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -8.1670

 13.8337

 -8.5673

 22.8000
  0.0000
 -9.0000
-17.8000
-59.7000

1023
0.242843
-3.2E-01
175.137
 13.2339
 -9.3792

0.010
1.043

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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255-15-35-55-75

95% Confidence Interval for Mu

-11.5-12.5-13.5

95% Confidence Interval for Median

DDAvgT(0,-1,-2,-3)
Variable:

-13.3000

 15.9867

-13.6108

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

-11.5000

 17.4398

-11.5579

 29.0000
 -0.7000
-12.3000
-23.6000
-73.1000

1017
0.151635
-3.0E-01
278.271
 16.6815
-12.5844

0.014
0.971

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

19.513.57.51.5-4.5-10.5-16.5

95% Confidence Interval for Mu

0.60.30.0

95% Confidence Interval for Median

MaxT(0)-MaxT(-1)
Variable:

  0.0000

  4.6012

 -0.1916

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.6000

  5.0163

  0.3947

 22.2000
  3.4000
  0.5000
 -2.8000
-17.3000

1032
0.661595
-3.0E-01
23.0376
4.79975
0.10155

0.000
3.553

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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191494-1-6-11-16

95% Confidence Interval for Mu

0.60.50.40.30.20.10.0-0.1-0.2-0.3

95% Confidence Interval for Median

MaxT(0)-MaxT(-2)
Variable:

  0.0000

  5.9536

 -0.2286

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.6000

  6.4910

  0.5305

 17.8000
  4.5000
  0.0000
 -4.5000
-18.3000

1031
-3.1E-01
-9.4E-02
38.5719
6.21063
0.15092

0.008
1.066

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

1680-8-16-24

95% Confidence Interval for Mu

0.60.40.20.0-0.2

95% Confidence Interval for Median

MaxT(0)-MaxT(-3)
Variable:

  0.0000

  6.5396

 -0.2560

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.6000

  7.1295

  0.5773

 18.9000
  4.5000
  0.0000
 -4.5000
-22.2000

1032
-2.0E-01
-9.7E-02
46.5356
6.82170
0.16066

0.175
0.530

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics



167 

 

 
 

181383-2-7-12-17

95% Confidence Interval for Mu

0.50.40.30.20.10.0-0.1-0.2

95% Confidence Interval for Median

MinT(0)-MinT(-1)
Variable:

  0.0000

  4.1864

 -0.1726

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.5000

  4.5644

  0.3614

 17.7000
  2.8000
  0.0000
 -2.8000
-16.8000

1030
0.997888
7.58E-02
19.0723
4.36718
0.09437

0.000
2.134

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

18102-6-14-22

95% Confidence Interval for Mu

0.50.40.30.20.10.0-0.1-0.2

95% Confidence Interval for Median

MinT(0)-MinT(-2)
Variable:

  0.0000

  5.5025

 -0.1904

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.5000

  5.9996

  0.5119

 21.1000
  3.4000
  0.0000
 -3.4000
-20.2000

1029
0.670517
0.165473
32.9501
5.74022
0.16074

0.000
1.697

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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2618102-6-14-22

95% Confidence Interval for Mu

0.60.30.0

95% Confidence Interval for Median

MinT(0)-MinT(-3)
Variable:

  0.0000

  5.8684

 -0.1975

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.5948

  6.3983

  0.5511

 23.3000
  3.9000
  0.0000
 -3.4000
-23.9000

1030
0.867060
9.00E-02
37.4762
6.12178
0.17680

0.000
1.728

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

12840-4-8-12

95% Confidence Interval for Mu

0.50.40.30.20.10.0-0.1-0.2

95% Confidence Interval for Median

AvgT(0)-AvgT(-1)
Variable:

  0.0000

  3.7813

 -0.1400

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.5000

  4.1228

  0.3423

 12.2000
  2.8000
  0.3000
 -2.5000
-12.9000

1030
8.60E-02
-9.6E-02
15.5599
3.94461
0.10117

0.164
0.542

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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181383-2-7-12-17

95% Confidence Interval for Mu

0.50.0-0.5

95% Confidence Interval for Median

AvgT(0)-AvgT(-2)
Variable:

 -0.5000

  5.1877

 -0.1762

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.6000

  5.6563

  0.4859

 18.6000
  3.9000
  0.0000
 -3.4000
-19.0000

1029
0.127619
2.01E-02
29.2875
5.41180
0.15481

0.563
0.307

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

18102-6-14-22

95% Confidence Interval for Mu

0.60.30.0

95% Confidence Interval for Median

AvgT(0)-AvgT(-3)
Variable:

  0.0000

  5.7118

 -0.1964

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.6000

  6.2275

  0.5322

 21.1000
  4.2000
  0.3000
 -3.9000
-23.1000

1030
0.288145
-6.6E-02
35.5029
5.95843
0.16786

0.321
0.422

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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2722171272

95% Confidence Interval for Mu

9.99.48.9

95% Confidence Interval for Median

MaxT(0)-MinT(0)
Variable:

 8.9000

 4.0467

 9.3413

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 9.5000

 4.4107

 9.8554

27.7000
12.2000
 8.9000
 6.7000
 0.0000

1038
0.639511
0.662944
17.8152
4.22080
9.59836

0.000
5.552

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

2722171272

95% Confidence Interval for Mu

9.99.48.9

95% Confidence Interval for Median

MaxT(-1)-MinT(-1)
Variable:

 8.9000

 4.0190

 9.3317

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 9.5000

 4.3802

 9.8421

27.7000
12.2000
 9.0000
 6.7000
 0.0000

1039
0.640176
0.634705
17.5709
4.19176
9.58691

0.000
4.883

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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2722171272

95% Confidence Interval for Mu

9.99.48.9

95% Confidence Interval for Median

MaxT(-2)-MinT(-2)
Variable:

 8.9000

 4.0106

 9.3703

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 9.5000

 4.3711

 9.8796

27.7000
12.2000
 9.0000
 6.7000
 0.0000

1039
0.630343
0.643266
17.4979
4.18305
9.62493

0.000
5.092

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

262218141062

95% Confidence Interval for Mu

9.99.48.9

95% Confidence Interval for Median

MaxT(-3)-MinT(-3)
Variable:

 8.9000

 3.9719

 9.3676

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 9.5000

 4.3290

 9.8720

27.7000
12.2000
 9.0000
 6.7000
 0.5000

1039
0.657700
0.648431
17.1622
4.14273
9.61983

0.000
4.959

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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2823181383-2

95% Confidence Interval for Mu

9.89.38.8

95% Confidence Interval for Median

Variable: MaxT(-1) - MinT(0)

  8.8000

  5.0995

  9.1800

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  9.5000

  5.5597

  9.8302

 28.8000
 13.3000
  8.9000
  5.6000
 -4.4000

1031
6.94E-02
0.424700
28.2978
5.31957
9.50514

0.000
3.483

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

2823181383-2

95% Confidence Interval for Mu

10.09.59.0

95% Confidence Interval for Median

MaxT(-2)-MinT(-1)
Variable:

  8.9000

  5.1243

  9.2527

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  9.5000

  5.5865

  9.9057

 28.8000
 13.3000
  8.9000
  5.6000
 -4.4000

1032
3.93E-02
0.411218
28.5730
5.34537
9.57917

0.000
3.369

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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2823181383-2

95% Confidence Interval for Mu

10.09.59.0

95% Confidence Interval for Median

MaxT(-3)-MinT(-2)
Variable:

  8.9000

  5.1378

  9.2976

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  9.5000

  5.6011

  9.9520

 28.8000
 13.3000
  8.9000
  5.6000
 -4.4000

1033
1.28E-02
0.394994
28.7230
5.35939
9.62478

0.000
3.175

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

856545255-15-35

95% Confidence Interval for Mu

1.51.00.50.0

95% Confidence Interval for Median

Variable: HS(0)-HS(-1)

  0.0000

  8.4632

  0.3043

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.0000

  9.2236

  1.3784

 91.4000
  2.6000
  0.0000
 -2.6000
-38.1000

1040
17.8414
2.64595
77.9154
8.82697
0.84135

 0.000
48.446

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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806040200-20-40

95% Confidence Interval for Mu

20-2

95% Confidence Interval for Median

HS(0)-HS(-2)
Variable:

 -2.5000

 12.0504

  0.9355

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.0000

 13.1331

  2.4650

 91.4000
  7.6000
  0.0000
 -5.1000
-45.7000

1040
6.19342
1.54264
157.963
12.5683
 1.7003

 0.000
25.392

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

806040200-20-40

95% Confidence Interval for Mu

3210

95% Confidence Interval for Median

HS(0)-HS(-3)
Variable:

  0.0000

 14.3785

  1.6870

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.0000

 15.6703

  3.5120

 91.4000
 10.1000
  0.0000
 -7.6000
-45.7000

1040
3.49827
1.24298
224.894
14.9965
 2.5995

 0.000
16.391

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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2010-0-10-20-30-40

95% Confidence Interval for Mu

-2.4-3.4-4.4

95% Confidence Interval for Median

Variable: Stl(0,-1)

 -2.6000

  4.6363

 -4.2635

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -2.5000

  5.0535

 -3.6742

 28.0000
  0.0000
 -2.6000
 -5.1000
-43.1000

1037
10.7306

-1.74091
23.3853
 4.83583
-3.96885

 0.000
40.153

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

25.012.5-0.0-12.5-25.0-37.5-50.0

95% Confidence Interval for Mu

-6.5-7.5-8.5

95% Confidence Interval for Median

Variable: Stl(0,-1,-2)

 -7.6000

  7.0543

 -8.3643

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 -6.3000

  7.6904

 -7.4657

 27.9000
 -2.6000
 -6.4000
-10.2000
-55.8000

1033
5.57396

-1.45911
54.1482
 7.35854
-7.91500

 0.000
28.502

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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216-9-24-39-54-69

95% Confidence Interval for Mu

-10-11-12

95% Confidence Interval for Median

Stl(0,-1,-2,-3)
Variable:

-10.2000

  9.1955

-12.3941

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

-10.1000

 10.0263

-11.2205

 22.9000
 -5.1000
-10.2000
-15.3000
-76.1000

1029
4.47897

-1.30964
92.0223
  9.5928

-11.8073

 0.000
21.798

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

16.013.511.08.56.03.51.0

95% Confidence Interval for Mu

1.51.00.50.0

95% Confidence Interval for Median

Variable: HNA(0)

 0.0000

 2.2842

 1.3995

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 1.0000

 2.4888

 1.6885

16.0000
 2.0000
 1.0000
 0.0000
 0.0000

1046
6.37242
2.31152
5.67414
2.38205
1.54398

  0.000
107.623

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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16.013.511.08.56.03.51.0

95% Confidence Interval for Mu

1.51.00.50.0

95% Confidence Interval for Median

Variable: HNA(-1)

 0.0000

 2.3025

 1.4203

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 1.0000

 2.5087

 1.7116

16.0000
 2.0000
 1.0000
 0.0000
 0.0000

1046
6.09445
2.26722
5.76550
2.40115
1.56597

  0.000
106.719

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

16.013.511.08.56.03.51.0

95% Confidence Interval for Mu

1.51.00.50.0

95% Confidence Interval for Median

Variable: HNA(-2)

 0.0000

 2.3200

 1.4440

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 1.0000

 2.5278

 1.7376

16.0000
 2.0000
 1.0000
 0.0000
 0.0000

1046
5.80915
2.21953
5.85347
2.41939
1.59082

  0.000
105.331

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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16.013.511.08.56.03.51.0

95% Confidence Interval for Mu

1.51.00.50.0

95% Confidence Interval for Median

Variable: HNA(-3)

 0.0000

 2.3305

 1.4730

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 1.0000

 2.5392

 1.7679

16.0000
 2.0000
 1.0000
 0.0000
 0.0000

1046
5.58199
2.17512
5.90653
2.43034
1.62046

  0.000
102.524

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

105856545255

95% Confidence Interval for Mu

543210

95% Confidence Interval for Median

Variable: HN(0)

  0.000

  8.239

  4.309

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.538

  8.978

  5.354

109.200
  7.600
  0.000
  0.000
  0.000

1042
28.6708
3.92157
73.8351
8.59273
4.83157

  0.000
120.187

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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105856545255

95% Confidence Interval for Mu

111098765

95% Confidence Interval for Median

Variable: HN(0,-1)

  4.938

 12.594

  8.864

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  5.100

 13.727

 10.464

116.800
 15.200
  5.100
  0.000
  0.000

1038
12.0932
2.68254
172.551
13.1359
 9.6645

 0.000
69.639

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

125105856545255

95% Confidence Interval for Mu

16151413121110

95% Confidence Interval for Median

Variable: HN(0,-1,-2)

 10.100

 16.019

 13.536

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 11.400

 17.463

 15.575

124.400
 21.500
 10.200
  1.300
  0.000

1034
7.84144
2.22944
279.205
16.7094
14.5556

 0.000
46.430

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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125105856545255

95% Confidence Interval for Mu

2120191817161514

95% Confidence Interval for Median

HN(0,-1,-2,-3)
Variable:

 13.900

 19.032

 18.171

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 15.300

 20.750

 20.599

132.000
 27.900
 15.200
  5.100
  0.000

1030
5.71267
1.94690
394.169
19.8537
19.3849

 0.000
36.259

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

8.006.755.504.253.001.750.50

95% Confidence Interval for Mu

0.40.30.20.10.0

95% Confidence Interval for Median

Variable: HNW(0)

0.00000

0.65734

0.32312

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

0.00000

0.71670

0.40698

8.80000
0.50000
0.00000
0.00000
0.00000

1030
26.2696
3.72277

0.470225
0.685730
0.365049

  0.000
138.475

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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8.006.755.504.253.001.750.50

95% Confidence Interval for Mu

0.80.70.60.50.40.3

95% Confidence Interval for Median

Variable: HNW(0,-1)

0.30000

0.96622

0.66767

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

0.40000

1.05387

0.79149

9.10000
1.10000
0.30000
0.00000
0.00000

1021
9.84622
2.35103
1.01632
1.00813
0.72958

 0.000
79.480

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

9.258.006.755.504.253.001.750.50

95% Confidence Interval for Mu

1.21.11.00.90.80.70.6

95% Confidence Interval for Median

HNW(0,-1,-2)
Variable:

0.60000

1.20658

1.02018

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

0.80000

1.31637

1.17528

9.30000
1.80000
0.60000
0.10000
0.00000

1015
5.09143
1.77055
1.58525
1.25907
1.09773

 0.000
50.265

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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10.08.46.85.23.62.00.4

95% Confidence Interval for Mu

1.61.51.41.31.21.11.00.9

95% Confidence Interval for Median

HNW(0,-1,-2,-3)
Variable:

 0.9000

 1.4250

 1.3694

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 1.2000

 1.5550

 1.5530

10.2000
 2.2250
 1.0000
 0.3000
 0.0000

1010
3.38609
1.51066
2.21169
1.48718
1.46119

 0.000
36.049

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

250210170130905010

95% Confidence Interval for Mu

403020100

95% Confidence Interval for Median

Variable: HND(0)

  0.000

 47.182

 33.822

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

  0.000

 51.451

 39.853

268.400
 67.100
  0.000
  0.000
  0.000

1026
1.16765
1.26886
2422.91
49.2230
36.8375

 0.000
95.166

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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250210170130905010

95% Confidence Interval for Mu

555045

95% Confidence Interval for Median

Variable: HND(0,-1)

 44.110

 48.855

 49.195

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 52.000

 53.305

 55.481

266.700
 87.500
 50.000
  0.000
  0.000

1013
7.22E-03
0.721128
2599.19
50.9822
52.3379

 0.000
36.829

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

250210170130905010

95% Confidence Interval for Mu

656055

95% Confidence Interval for Median

HND(0,-1,-2)
Variable:

 55.600

 47.925

 58.846

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 65.303

 52.313

 65.045

266.700
 99.000
 59.900
  7.000
  0.000

1003
5.96E-02
0.528141
2502.27
50.0227
61.9458

 0.000
16.216

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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250210170130905010

95% Confidence Interval for Mu

71.570.569.568.567.566.565.564.5

95% Confidence Interval for Median

HND(0,-1,-2,-3)
Variable:

 65.000

 45.872

 65.081

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

 69.700

 50.092

 71.043

266.700
100.000
 67.100
 34.200
  0.000

994
0.467204
0.486685
2293.30
47.8884
68.0620

0.000
7.915

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics
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“OLD SNOW HYPOTHESIS TESTING RESULTS” 
 
The following tables provide the old snow hypothesis testing results.  For each variable, 
up to three transformations were made to correct non-normal and/or unequal variance.  
The asterisk denotes which form of the variable was used in the model selection phase of 
the study. 
 
  

 
 
 
 

Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

None* - - No Yes Mann-Whitney Yes
Common 0.5 - No Yes Mann-Whitney Yes
Optimal 0.337 - No Yes Mann-Whitney Yes
Alternate 0.281 - No Yes Mann-Whitney Yes

None - - No Yes Mann-Whitney Yes
Common 1 add 16 No Yes Mann-Whitney Yes
Optimal* 1.235 add 16 Yes Yes 2-Sample T-Test Yes

None* - - No Yes Mann-Whitney Yes
Common 1 add 21 No Yes Mann-Whitney Yes
Optimal 1.236 add 21 No Yes Mann-Whitney Yes
Alternate 1.293 add 21 No Yes Mann-Whitney Yes

None* - - No Yes Mann-Whitney Yes
Common 1 add 21 No Yes Mann-Whitney Yes
Optimal 1.012 add 21 No Yes Mann-Whitney Yes
Alternate 0.955 add 21 No Yes Mann-Whitney Yes

None* - - Yes Yes 2-Sample T-Test No

None* - - No Yes Mann-Whitney Yes
Common 1.5 add 15 No Yes Mann-Whitney Yes
Optimal 1.348 add 15 No Yes Mann-Whitney Yes
Alternate 1.291 add 15 No Yes Mann-Whitney Yes

MaxT(-3)

AvgMaxT(0,-1)

Day of Year

MaxT(0)

MaxT(-1)

MaxT(-2)
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

AvgMaxT(0,-1,-2)
None - - No Yes Mann-Whitney Yes
Common 1 add 16 No Yes Mann-Whitney Yes
Optimal* 1.235 add 16 Yes Yes 2-Sample T-Test Yes

AvgMaxT(0,-1,-2,-3)
None* - - No Yes Mann-Whitney Yes
Common 1 add 14 No Yes Mann-Whitney Yes
Optimal 1.124 add 14 No Yes Mann-Whitney Yes
Alternate 1.8 add 14 No Yes Mann-Whitney Yes

MinT(0)
None* - - No Yes Mann-Whitney Yes
Common 1.75 add 24 No Yes Mann-Whitney Yes
Optimal 1.686 add 24 No Yes Mann-Whitney Yes
Alternate 2 add 24 No Yes Mann-Whitney Yes

MinT(-1)
None - - No Yes Mann-Whitney Yes
Common* 1.75 add 27 Yes Yes 2-Sample T-Test Yes

MinT(-2)
None - - No Yes Mann-Whitney Yes
Common* 1.5 add 27 Yes Yes 2-Sample T-Test Yes

MinT(-3)
None* - - No Yes Mann-Whitney No
Common 1.5 add 27 No Yes Mann-Whitney No
Optimal 1.461 add 27 No Yes Mann-Whitney No
Alternate 1.6 add 27 No Yes Mann-Whitney No

AvgMinT(0,-1)
None - - No Yes Mann-Whitney Yes
Common 1.75 add 25 No Yes Mann-Whitney Yes
Optimal* 1.798 add 25 Yes Yes 2-Sample T-Test Yes

AvgMinT(0,-1,-2)
None - - No Yes Mann-Whitney Yes
Common* 1.75 add 24 Yes Yes 2-Sample T-Test Yes

AvgMinT(0,-1,-2,-3)
None - - No Yes Mann-Whitney Yes
Common* 1.75 add 23 Yes Yes 2-Sample T-Test Yes
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

AvgT(0)
None - - No Yes Mann-Whitney Yes
Common* 1.75 add 20 Yes Yes 2-Sample T-Test Yes

AvgT(-1)
None - - No Yes Mann-Whitney Yes
Common* 1.5 add 23 Yes Yes 2-Sample T-Test Yes

AvgT(-2)
None - - No Yes Mann-Whitney Yes
Common* 1.25 add 23 Yes Yes 2-Sample T-Test Yes

AvgT(-3)
None - - No No  Kolomogorov-Smirnov -
Common* 1.25 add 21 Yes Yes 2-Sample T-Test No

AvgAvgT(0,-1)
None - - No Yes Mann-Whitney Yes
Common* 1.75 add 20 Yes Yes 2-Sample T-Test Yes

AvgAvgT(0,-1,-2)
None - - No Yes Mann-Whitney Yes
Common* 1.5 add 20 Yes Yes 2-Sample T-Test Yes

AvgAvgT(0,-1,-2,-3)
None - - No Yes Mann-Whitney Yes
Common* 1.5 add 18 Yes Yes 2-Sample T-Test Yes

DDMaxT(0)
None - - No Yes Mann-Whitney Yes
Common 1 add 16 No Yes Mann-Whitney Yes
Optimal* 1.235 add 16 Yes Yes 2-Sample T-Test Yes

DDMaxT(0,-1)
None - - No Yes Mann-Whitney Yes
Common 1.25 add 28 No Yes Mann-Whitney Yes
Optimal* 1.236 add 28 Yes Yes 2-Sample T-Test Yes

DDMaxT(0,-1,-2)
None - - No Yes Mann-Whitney Yes
Common 1 add 46 No Yes Mann-Whitney Yes
Optimal* 1.124 add 46 Yes Yes 2-Sample T-Test Yes
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

DDMaxT(0,-1,-2,-3)
None - - No Yes Mann-Whitney Yes
Common 1 add 53 No Yes Mann-Whitney Yes
Optimal* 1.124 add 53 Yes Yes 2-Sample T-Test Yes

DDAvgT(0)
None - - No Yes Mann-Whitney Yes
Common* 1 add 20 Yes Yes 2-Sample T-Test Yes

DDAvgT(0,-1)
None - - No Yes Mann-Whitney Yes
Common* 1.75 add 39 Yes Yes 2-Sample T-Test Yes

DDAvgT(0,-1,-2)
None - - No Yes Mann-Whitney Yes
Common* 1.5 add 58 Yes Yes 2-Sample T-Test Yes

DDAvgT(0,-1,-2,-3)
None - - No Yes Mann-Whitney Yes
Common 1.25 add 71 No Yes Mann-Whitney Yes
Optimal* 1.349 add 71 Yes Yes 2-Sample T-Test Yes

MaxT(0)-MaxT(-1)
None* - - No Yes Mann-Whitney No
Common 1 add 17 No Yes Mann-Whitney No
Optimal 1.235 add 17 No Yes Mann-Whitney No
Alternate 1.292 add 17 No Yes Mann-Whitney No

MaxT(0)-MaxT(-2)
None - - No Yes Mann-Whitney No
Common* 1.25 add 14 Yes Yes 2-Sample T-Test No

MaxT(0)-MaxT(-3)
None - - No Yes Mann-Whitney Yes
Common* 1.25 add 15 Yes Yes 2-Sample T-Test No

MinT(0)-MinT(-1)
None* - - No Yes Mann-Whitney No
Common 1 add 12 No Yes Mann-Whitney No
Optimal 0.899 add 12 No Yes Mann-Whitney No
Alternate 0.843 add 12 No Yes Mann-Whitney No
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

MinT(0)-MinT(-2)
None - - No Yes Mann-Whitney No
Common* 0.75 add 11 Yes Yes 2-Sample T-Test No

MinT(0)-MinT(-3)
None - - No Yes Mann-Whitney No
Common 1 add 11 No Yes Mann-Whitney No
Optimal* 0.899 add 11 Yes Yes 2-Sample T-Test No

AvgT(0)-AvgT(-1)
None* - - No Yes Mann-Whitney No
Common 1 add 10 No Yes Mann-Whitney No
Optimal 1.124 add 10 No Yes Mann-Whitney No
Alternate 1.067 add 10 No Yes Mann-Whitney No

AvgT(0)-AvgT(-2)
None* - - Yes Yes 2-Sample T-Test No

AvgT(0)-AvgT(-3)
None* - - Yes Yes 2-Sample T-Test No

MaxT(0)-MinT(0)
None* - - No Yes Mann-Whitney No
Common 0.75 - No Yes Mann-Whitney No
Optimal 0.786 - No Yes Mann-Whitney No
Alternate 0.843 - No Yes Mann-Whitney No

MaxT(-1)-MinT(-1)
None* - - No Yes Mann-Whitney No
Common 0.5 - No Yes Mann-Whitney No
Optimal 0.562 - No Yes Mann-Whitney No
Alternate 0.618 - No Yes Mann-Whitney No

MaxT(-2)-MinT(-2)
None - - No Yes Mann-Whitney No
Common* 0.5 - Yes Yes 2-Sample T-Test No

MaxT(-3)-MinT(-3)
None - - No Yes Mann-Whitney No
Common* 0.5 - Yes Yes 2-Sample T-Test No

MaxT(-1)-MinT(0)
None - - No No Kolomogorov-Smirnov -
Common* 0.5 add 3 Yes No 2-Sample T-Test No
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

MaxT(-2)-MinT(-1)
None - - No Yes Mann-Whitney No
Common* 0.5 add 4 Yes Yes 2-Sample T-Test No

MaxT(-3)-MinT(-2)
None - - No Yes Mann-Whitney No
Common* 0.75 add 3 Yes Yes 2-Sample T-Test No

HS(0)-HS(-1)
None* - - No Yes Mann-Whitney Yes
Common 4.5 add 39 No Yes Mann-Whitney Yes
Optimal 4.494 add 39 No Yes Mann-Whitney Yes
Alternate 4.437 add 39 No Yes Mann-Whitney Yes

HS(0)-HS(-2)
None* - - No Yes Mann-Whitney Yes
Common 3 add 39 No No Kolomogorov-Smirnov -
Optimal 2.808 add 39 No No Kolomogorov-Smirnov -
Alternate 3.2 add 39 No No Kolomogorov-Smirnov -

HS(0)-HS(-3)
None* - - No Yes Mann-Whitney Yes
Common 1 add 36 No Yes Mann-Whitney Yes
Optimal 1.124 add 36 No Yes Mann-Whitney Yes
Alternate 1.18 add 36 No Yes Mann-Whitney Yes

Stl(0,-1)
None* - - No Yes Mann-Whitney Yes
Common 4.5 add 39 No Yes Mann-Whitney Yes
Optimal 4.494 add 39 No Yes Mann-Whitney Yes
Alternate 4.437 add 39 No Yes Mann-Whitney No

Stl(0,-1-2)
None* - - No Yes Mann-Whitney Yes
Common 3 add 39 No No Kolomogorov-Smirnov -
Optimal 2.809 add 39 No No Kolomogorov-Smirnov -
Alternate 2.416 add 39 No No Kolomogorov-Smirnov -

Stl(0,-1-2,-3)
None* - - No Yes Mann-Whitney Yes
Common 2.25 add 51 No No Kolomogorov-Smirnov -
Optimal 2.36 add 51 No No Kolomogorov-Smirnov -
Alternate 2.416 add 51 No No Kolomogorov-Smirnov -
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

HNA(0)
None* - - No Yes Mann-Whitney No
Common -0.5 - No Yes Mann-Whitney No
Optimal -0.562 - No Yes Mann-Whitney No
Alternate -0.618 - No Yes Mann-Whitney No

HNA(-1)
None* - - No Yes Mann-Whitney No
Common -0.25 - No Yes Mann-Whitney No
Optimal -0.224 - No Yes Mann-Whitney No
Alternate -0.168 - No Yes Mann-Whitney No

HNA(-2)
None* - - No Yes Mann-Whitney No
Common -0.25 add 1 No Yes Mann-Whitney No
Optimal -0.224 add 1 No Yes Mann-Whitney No
Alternate -0.168 add 1 No Yes Mann-Whitney No

HNA(-3)
None* - - No Yes Mann-Whitney No
Common -0.25 add 1 No Yes Mann-Whitney No
Optimal -0.337 add 1 No Yes Mann-Whitney No
Alternate -0.393 add 1 No Yes Mann-Whitney No

HN(0)
None* - - No Yes Mann-Whitney No
Common 1 add 1 No Yes Mann-Whitney No
Optimal 5 add 1 No Yes Mann-Whitney No
Alternate 4.944 add 1 No Yes Mann-Whitney No

HN(0,-1)
None* - - No Yes Mann-Whitney No
Common 1 add 1 No Yes Mann-Whitney No
Optimal 5 add 1 No Yes Mann-Whitney No
Alternate 4.944 add 1 No Yes Mann-Whitney No

HN(0,-1,-2)
None* - - No Yes Mann-Whitney No
Common -1 add 1 No Yes Mann-Whitney No
Optimal -1.124 add 1 No Yes Mann-Whitney No
Alternate -1.18 add 1 No Yes Mann-Whitney No



193 

 
 
 

Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

HN(0,-1-2,-3)
None* - - No Yes Mann-Whitney No
Common -0.25 add 1 No Yes Mann-Whitney No
Optimal -0.225 add 1 No Yes Mann-Whitney No
Alternate -0.169 add 1 No Yes Mann-Whitney No

HNW(0)
None* - - No Yes Mann-Whitney No
Common 1 add 1 No Yes Mann-Whitney No
Optimal 5 add 1 No Yes Mann-Whitney No
Alternate - add 1 No Yes Mann-Whitney No

HNW(0,-1)
None* - - No Yes Mann-Whitney No
Common 1 add 1 No Yes Mann-Whitney No
Optimal 5 add 1 No Yes Mann-Whitney No
Alternate - add 1 No Yes Mann-Whitney No

HNW(0,-1,-2)
None* - - No Yes Mann-Whitney No
Common -5 add 1 No Yes Mann-Whitney No
Optimal -4.944 add 1 No Yes Mann-Whitney No
Alternate -4.5 add 1 No Yes Mann-Whitney No

HNW(0,-1,-2-3)
None* - - No Yes Mann-Whitney No
Common -2 add 1 No Yes Mann-Whitney No
Optimal -1.911 add 1 No Yes Mann-Whitney No
Alternate -1.854 add 1 No Yes Mann-Whitney No

HND(0)
None* - - No Yes Mann-Whitney No
Common 1 add 1 No Yes Mann-Whitney No
Optimal 5 add 1 No Yes Mann-Whitney No
Alternate - add 1 No Yes Mann-Whitney No

HND(0,-1)
None* - - No Yes Mann-Whitney No
Common 1 add 1 No Yes Mann-Whitney No
Optimal 5 add 1 No Yes Mann-Whitney No
Alternate - add 1 No Yes Mann-Whitney No
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Old Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

HND(0-1,-2)
None* - - No Yes Mann-Whitney No
Common -0.5 add 1 No Yes Mann-Whitney No
Optimal -0.562 add 1 No Yes Mann-Whitney No
Alternate -0.618 add 1 No Yes Mann-Whitney No

HND(0-1,-2-3)
None* - - No Yes Mann-Whitney No
Common 0 add 1 No Yes Mann-Whitney No
Optimal 0.056 add 1 No Yes Mann-Whitney No
Alternate -0.056 add 1 No Yes Mann-Whitney No
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“NEW SNOW HYPOTHESIS TESTING RESULTS” 
 
The following tables provide the new snow hypothesis testing results.  For each variable, 
up to three transformations were made to correct non-normal and/or unequal variance.  
The asterisk denotes which form of the variable was used in the model selection phase of 
the study. 
 
 

 
 

New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

None* - - No Yes Mann-Whitney No
Common 1 - No Yes Mann-Whitney No
Optimal 1.461 - No Yes Mann-Whitney No
Alternate 1.517 - No Yes Mann-Whitney No

None* - - No Yes Mann-Whitney No
Common 1 add 21 No Yes Mann-Whitney No
Optimal 1.124 add 21 No Yes Mann-Whitney No
Alternate 1.067 add 21 No Yes Mann-Whitney No

None* - - No Yes Mann-Whitney No
Common 1 add 18 No Yes Mann-Whitney No
Optimal 1.011 add 18 No Yes Mann-Whitney No
Alternate 1.067 add 18 No Yes Mann-Whitney No

None* - - No Yes Mann-Whitney No
Common 1 add 16 No Yes Mann-Whitney No
Optimal 1.011 add 16 No Yes Mann-Whitney No
Alternate 1.067 add 16 No Yes Mann-Whitney No

None* - - No Yes Mann-Whitney No
Common 1 add 21 No Yes Mann-Whitney No
Optimal 0.899 add 21 No Yes Mann-Whitney No
Alternate 0.843 add 21 No Yes Mann-Whitney No

None* - - Yes Yes 2-Sample T-Test No

MaxT(-3)

AvgMaxT(0,-1)

Day of Year

MaxT(0)

MaxT(-1)

MaxT(-2)
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

AvgMaxT(0,-1,-2)
None* - - Yes Yes 2-Sample T-Test No

AvgMaxT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test No

MinT(0)
None* - - No Yes Mann-Whitney Yes
Common 1.5 add 27 No Yes Mann-Whitney Yes
Optimal 1.574 add 27 No Yes Mann-Whitney Yes
Alternate 1.63 add 27 No Yes Mann-Whitney Yes

MinT(-1)
None - - No Yes Mann-Whitney No
Common* 1.5 add 27 Yes Yes 2-Sample T-Test No

MinT(-2)
None* - - No Yes Mann-Whitney No
Common 1.5 add 25 No Yes Mann-Whitney No
Optimal 1.349 add 25 No Yes Mann-Whitney No
Alternate 1.405 add 25 No Yes Mann-Whitney No

MinT(-3)
None* - - No Yes Mann-Whitney No
Common 1.5 add 26 No Yes Mann-Whitney No
Optimal 1.461 add 26 No Yes Mann-Whitney No
Alternate 1.517 add 26 No Yes Mann-Whitney No

AvgMinT(0,-1)
None - - No Yes Mann-Whitney No
Common 1.5 add 26 No Yes Mann-Whitney Yes
Optimal* 1.685 add 26 Yes Yes 2-Sample T-Test Yes

AvgMinT(0,-1,-2)
None - - No Yes Mann-Whitney No
Common 1.5 add 25 No Yes Mann-Whitney No
Optimal 1.573 add 25 No Yes Mann-Whitney No
Alternate* 1.629 add 25 Yes Yes 2-Sample T-Test No

AvgMinT(0,-1,-2,-3)
None* - - No Yes Mann-Whitney No
Common 1.5 add 24 No Yes Mann-Whitney No
Optimal 1.461 add 24 No Yes Mann-Whitney No
Alternate 1.517 add 24 No Yes Mann-Whitney No
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

AvgT(0)
None - - No No Kolomogorob-Smirnov -
Common* 1.5 add 23 Yes No 2-Sample T-Test Yes

AvgT(-1)
None - - No Yes Mann-Whitney No
Common* 1.25 add 21 Yes Yes 2-Sample T-Test No

AvgT(-2)
None - - No Yes Mann-Whitney No
Common* 1.25 add 21 Yes Yes 2-Sample T-Test No

AvgT(-3)
None* - - Yes Yes 2-Sample T-Test No

AvgAvgT(0,-1)
None - - No No Kolomogorov-Smirnov -
Common* 1.5 add 22 Yes Yes 2-Sample T-Test No

AvgAvgT(0,-1,-2)
None - - No Yes Mann-Whitney No
Common* 1.5 add 20 Yes Yes 2-Sample T-Test No

AvgAvgT(0,-1,-2,-3)
None - - No Yes Mann-Whitney No
Common* 1.25 add 19 Yes Yes 2-Sample T-Test No

DDMaxT(0)
None* - - No Yes Mann-Whitney No
Common 1 add 21 No Yes Mann-Whitney No
Optimal 1.124 add 21 No Yes Mann-Whitney No
Alternate 1.067 add 21 No Yes Mann-Whitney No

DDMaxT(0,-1)
None* - - Yes Yes 2-Sample T-Test No

DDMaxT(0,-1,-2)
None* - - Yes Yes 2-Sample T-Test No

DDMaxT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test No
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

DDAvgT(0)
None - - No No Kolomogorov-Smirnov -
Common* 1.5 add 23 Yes No 2-Sample T-Test Yes

DDAvgT(0,-1)
None - - No No Kolomorogov-Smirnov -
Common* 1.5 add 43 Yes Yes 2-Sample T-Test No

DDAvgT(0,-1,-2)
None - - No Yes Mann-Whitney No
Common* 1.5 add 60 Yes Yes 2-Sample T-Test No

DDAvgT(0,-1,-2,-3)
None - - No Yes Mann-Whitney No
Common 1 add 74 No Yes Mann-Whitney No
Optimal* 1.236 add 74 Yes Yes 2-Sample T-Test no

MaxT(0)-MaxT(-1)
None* - - No Yes Mann-Whitney No
Common 1.5 add 18 No Yes Mann-Whitney No
Optimal 1.348 add 18 No Yes Mann-Whitney No
Alternate 1.291 add 18 No Yes Mann-Whitney No

MaxT(0)-MaxT(-2)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(0)-MaxT(-3)
None* - - Yes Yes 2-Sample T-Test No

MinT(0)-MinT(-1)
None* - - No Yes Mann-Whitney Yes
Common 1 add 17 No Yes Mann-Whitney Yes
Optimal 1.011 add 17 No Yes Mann-Whitney Yes
Alternate 0.954 add 17 No Yes Mann-Whitney Yes

MinT(0)-MinT(-2)
None* - - No Yes Mann-Whitney Yes
Common 1 add 21 No Yes Mann-Whitney Yes
Optimal 0.899 add 21 No Yes Mann-Whitney Yes
Alternate 0.843 add 21 No Yes Mann-Whitney Yes
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

MinT(0)-MinT(-3)
None - - No Yes Mann-Whitney No
Common 1 add 24 No Yes Mann-Whitney No
Optimal* 1.124 add 24 No Yes Mann-Whitney Yes
Alternate 1.067 add 24 No Yes Mann-Whitney Yes

AvgT(0)-AvgT(-1)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(0)-AvgT(-2)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(0)-AvgT(-3)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(0)-MinT(0)
None* - - No Yes Mann-Whitney No
Common 0.5 add 1 No Yes Mann-Whitney No
Optimal 0.337 add 1 No Yes Mann-Whitney No
Alternate 0.281 add 1 No Yes Mann-Whitney No

MaxT(-1)-MinT(-1)
None* - - No Yes Mann-Whitney No
Common 0.5 add 1 No Yes Mann-Whitney No
Optimal 0.562 add 1 No Yes Mann-Whitney No
Alternate 0.506 add 1 No Yes Mann-Whitney No

MaxT(-2)-MinT(-2)
None - - No Yes Mann-Whitney No
Common* 0.5 add 1 Yes Yes 2-Sample T-Test No

MaxT(-3)-MinT(-3)
None - - No Yes Mann-Whitney No
Common* 0.5 add 1 Yes Yes 2-Sample T-Test No

MaxT(-1)-MinT(0)
None - - No Yes Mann-Whitney Yes
Common 0.5 add 5 No Yes Mann-Whitney Yes
Optimal* 0.674 add 5 Yes Yes 2-Sample T-Test Yes

MaxT(-2)-MinT(-1)
None - - No Yes Mann-Whitney No
Common 0.75 add 5 No Yes Mann-Whitney No
Optimal* 0.674 add 5 Yes Yes 2-Sample T-Test No
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

MaxT(-3)-MinT(-2)
None - - No Yes Mann-Whitney No
Common 0.5 add 5 No Yes Mann-Whitney No
Optimal* 0.562 add 5 Yes Yes 2-Sample T-Test No

HS(0)-HS(-1)
None* - - No Yes Mann-Whitney No
Common 0.25 add 34 No Yes Mann-Whitney No
Optimal 0.337 add 34 No Yes Mann-Whitney No
Alternate 0.393 add 34 No Yes Mann-Whitney No

HS(0)-HS(-2)
None* - - No Yes Mann-Whitney No
Common 0.5 add 46 No Yes Mann-Whitney No
Optimal 0.562 add 46 No Yes Mann-Whitney No
Alternate 0.618 add 46 No No Mann-Whitney No

HS(0)-HS(-3)
None* - - No Yes Mann-Whitney No
Common 0.5 add 46 No Yes Mann-Whitney No
Optimal 0.562 add 46 No Yes Mann-Whitney No
Alternate 0.618 add 46 No No Mann-Whitney No

Stl(0,-1)
None* - - No Yes Mann-Whitney Yes
Common 2 add 45 No Yes Mann-Whitney Yes
Optimal 2.022 add 45 No Yes Mann-Whitney Yes
Alternate 2.079 add 45 No Yes Mann-Whitney Yes

Stl(0,-1-2)
None* - - No Yes Mann-Whitney Yes
Common 2 add 56 No Yes Mann-Whitney Yes
Optimal 2.022 add 56 No Yes Mann-Whitney Yes
Alternate 2.079 add 56 No Yes Mann-Whitney Yes

Stl(0,-1-2,-3)
None* - - No Yes Mann-Whitney Yes
Common 2 add 7 No Yes Mann-Whitney Yes
Optimal 2.134 add 7 No Yes Mann-Whitney Yes
Alternate 2.191 add 7 No Yes Mann-Whitney Yes
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

HNA(0)
None* - - No Yes Mann-Whitney No
Common -4 add 1 No Yes Mann-Whitney No
Optimal -4.494 add 1 No Yes Mann-Whitney No
Alternate -4.551 add 1 No Yes Mann-Whitney No

HNA(-1)
None* - - No Yes Mann-Whitney Yes
Common -2.5 add 1 No No Kolomogorov-Smirnov -
Optimal -2.471 add 1 No No Kolomogorov-Smirnov -
Alternate -2.415 add 1 No No Kolomogorov-Smirnov -

HNA(-2)
None* - - No Yes Mann-Whitney No
Common -1 add 1 No Yes Mann-Whitney No
Optimal -1.012 add 1 No Yes Mann-Whitney No
Alternate -1.068 add 1 No Yes Mann-Whitney No

HNA(-3)
None* - - No Yes Mann-Whitney No
Common -1 add 1 No Yes Mann-Whitney No
Optimal -0.899 add 1 No Yes Mann-Whitney No
Alternate -0.843 add 1 No Yes Mann-Whitney No

HN(0)
None* - - No Yes Mann-Whitney No
Common 0 add 1 No Yes Mann-Whitney No
Optimal -0.056 add 1 No Yes Mann-Whitney No
Alternate 0.056 add 1 No Yes Mann-Whitney No

HN(0,-1)
None* - - No Yes Mann-Whitney No
Common 0 add 1 No Yes Mann-Whitney No
Optimal 0.113 add 1 No Yes Mann-Whitney No
Alternate 0.17 add 1 No Yes Mann-Whitney No

HN(0,-1,-2)
None* - - No Yes Mann-Whitney Yes
Common 0.25 add 1 No No Kolomogorov-Smirnov -
Optimal 0.225 add 1 No No Kolomogorov-Smirnov -
Alternate 0.282 add 1 No Yes Mann-Whitney Yes
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

HN(0,-1-2,-3)
None* - - No Yes Mann-Whitney Yes
Common 0.25 add 1 No Yes Mann-Whitney Yes
Optimal 0.337 add 1 No Yes Mann-Whitney Yes
Alternate 0.393 add 1 No Yes Mann-Whitney Yes

HNW(0)
None* - - No Yes Mann-Whitney No
Common -1.5 add 1 No Yes Mann-Whitney No
Optimal -1.573 add 1 No Yes Mann-Whitney No
Alternate -1.629 add 1 No Yes Mann-Whitney No

HNW(0,-1)
None* - - No Yes Mann-Whitney Yes
Common -0.5 add 1 No Yes Mann-Whitney Yes
Optimal -0.562 add 1 No Yes Mann-Whitney Yes
Alternate -0.618 add 1 No Yes Mann-Whitney Yes

HNW(0,-1,-2)
None* - - No Yes Mann-Whitney Yes
Common 0 add 1 No Yes Mann-Whitney No
Optimal -0.225 add 1 No No Kolomogorov-Smirnov -
Alternate -0.282 add 1 No No Kolomogorov-Smirnov -

HNW(0,-1,-2-3)
None* - - No Yes Mann-Whitney Yes
Common 0 add 1 No Yes Mann-Whitney Yes
Optimal -0.056 add 1 No No Kolomogorov-Smirnov -
Alternate 0.056 add 1 No No Kolomogorov-Smirnov -

HND(0)
None* - - No No Kolomogorov-Smirnov -
Common 0.25 add 1 No No Kolomogorov-Smirnov -
Optimal 0.337 add 1 No No Kolomogorov-Smirnov -
Alternate 0.393 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data for a 2-Sample T-Test with unequal variance, results were 'not significant'

HND(0,-1)
None* - - No Yes Mann-Whitney Yes
Common 0.5 add 1 No Yes Mann-Whitney Yes
Optimal 0.674 add 1 No Yes Mann-Whitney Yes
Alternate 0.73 add 1 No Yes Mann-Whitney Yes
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New Snow Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significant 
Predictor?

HND(0-1,-2)
None* - - No Yes Mann-Whitney No
Common 0.5 add 1 No Yes Mann-Whitney No
Optimal 0.674 add 1 No Yes Mann-Whitney No
Alternate 0.73 add 1 No Yes Mann-Whitney No

HND(0-1,-2-3)
None* - - No Yes Mann-Whitney Yes
Common 0.5 add 1 No Yes Mann-Whitney Yes
Optimal 0.674 add 1 No Yes Mann-Whitney Yes
Alternate 0.73 add 1 No Yes Mann-Whitney Yes
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“OLD SNOW AND NEW SNOW WET AVALANCHE DAY HYPOTHESIS  
TESTING RESULTS” 

 
The following tables provide the old snow and new snow wet avalanche day hypothesis 
testing results.  For each variable, up to three transformations were made to correct non-
normal and/or unequal variance.  The asterisk denotes which form of the variable was 
used in the model selection phase of the study. 
 
 

 

Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

None* - - No Yes Mann-Whitney No
Optimal 1.686 - No Yes Mann-Whitney No
Lower Alternate 1.629 - No Yes Mann-Whitney No
Upper Alternate 1.743 - No Yes Mann-Whitney No

None* - - Yes Yes 2-Sample T-Test Yes

None* - - Yes Yes 2-Sample T-Test Yes

None* - - Yes Yes 2-Sample T-Test Yes

None* - - Yes Yes 2-Sample T-Test No

None* - - Yes Yes 2-Sample T-Test Yes

AvgMaxT(0,-1,-2)
None* - - Yes Yes 2-Sample T-Test Yes

AvgMaxT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test Yes

MinT(0)
None* - - Yes Yes 2-Sample T-Test Yes

MinT(-1)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(-3)

AvgMaxT(0,-1)

Day of Year

MaxT(0)

MaxT(-1)

MaxT(-2)
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

MinT(-2)
None* - - Yes Yes 2-Sample T-Test Yes

MinT(-3)
None - - No Yes Mann-Whitney Yes
Optimal* 1.348 add 21 Yes Yes 2-Sample T-Test Yes

AvgMinT(0,-1)
None* - - Yes No 2-Sample T-Test Yes
Optimal 1.124 add 18 Yes No 2-Sample T-Test Yes
Lower Alternate 1.067 add 18 Yes No 2-Sample T-Test Yes
Upper Alternate 1.18 add 18 Yes No 2-Sample T-Test Yes

AvgMinT(0,-1,-2)
None* - - Yes Yes 2-Sample T-Test Yes

AvgMinT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(0)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(-1)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(-2)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(-3)
None* - - Yes Yes 2-Sample T-Test Yes

AvgAvgT(0,-1)
None* - - Yes No 2-Sample T-Test Yes
Optimal 0.899 add 12 Yes No 2-Sample T-Test Yes
Lower Alternate 0.843 add 12 Yes No 2-Sample T-Test Yes
Upper Alternate 0.955 add 12 Yes No 2-Sample T-Test Yes

AvgAvgT(0,-1,-2)
None - - Yes No 2-Sample T-Test Yes
Optimal* 0.899 add 11 Yes No 2-Sample T-Test Yes
Lower Alternate 0.843 add 11 Yes Yes 2-Sample T-Test Yes

AvgAvgT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test Yes
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

DDMaxT(0)
None* - - Yes Yes 2-Sample T-Test Yes

DDMaxT(0,-1)
None* - - Yes Yes 2-Sample T-Test Yes

DDMaxT(0,-1,-2)
None* - - Yes Yes 2-Sample T-Test Yes

DDMaxT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test Yes

DDAvgT(0)
None* - - Yes Yes 2-Sample T-Test Yes

DDAvgT(0,-1)
None* - - Yes No 2-Sample T-Test Yes
Optimal 0.899 add 23 Yes No 2-Sample T-Test Yes
Lower Alternate 0.843 add 23 Yes No 2-Sample T-Test Yes
Upper Alternate 0.955 add 23 Yes No 2-Sample T-Test Yes

DDAvgT(0,-1,-2)
None - - Yes No 2-Sample T-Test Yes
Optimal 0.899 add 32 Yes No 2-Sample T-Test Yes
Lower Alternate* 0.843 add 32 Yes Yes 2-Sample T-Test Yes

DDAvgT(0,-1,-2,-3)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(0)-MaxT(-1)
None - - Yes No 2-Sample T-Test No
Optimal* 1.124 add 12 Yes Yes 2-Sample T-Test No

MaxT(0)-MaxT(-2)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(0)-MaxT(-3)
None* - - Yes Yes 2-Sample T-Test No

MinT(0)-MinT(-1)
None* - - Yes No 2-Sample T-Test No
Optimal 1.236 add 12 Yes No 2-Sample T-Test No
Lower Alternative 1.18 add 12 Yes No 2-Sample T-Test No
Upper Alternative 1.293 add 12 Yes No 2-Sample T-Test No
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

MinT(0)-MinT(-2)
None* - - Yes Yes 2-Sample T-Test No

MinT(0)-MinT(-3)
None* - - Yes Yes 2-Sample T-Test No

AvgT(0)-AvgT(-1)
None - - No No Kolomogorov-Smirnov Yes
Optimal* 1.348 add 10 Yes No 2-Sample T-Test No
Lower Alternate 1.291 add 10 Yes No 2-Sample T-Test No
Upper Alternate 1.404 add 10 Yes No 2-Sample T-Test No

AvgT(0)-AvgT(-2)
None* - - Yes Yes 2-Sample T-Test Yes

AvgT(0)-AvgT(-3)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(0)-MinT(0)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(-1)-MinT(-1)
None* - - Yes Yes 2-Sample T-Test Yes

MaxT(-2)-MinT(-2)
None* - - Yes Yes 2-Sample T-Test No

MaxT(-3)-MinT(-3)
None* - - Yes Yes 2-Sample T-Test No

MaxT(-1)-MinT(0)
None* - - Yes No 2-Sample T-Test Yes
Optimal 1.011 add 5 Yes No 2-Sample T-Test Yes
Lower Alternate 0.954 add 5 Yes No 2-Sample T-Test Yes
Upper Alternate 1.067 add 5 Yes No 2-Sample T-Test Yes

MaxT(-2)-MinT(-1)
None* - - Yes Yes 2-Sample T-Test No

MaxT(-3)-MinT(-2)
None* - - Yes Yes 2-Sample T-Test No
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

HS(0)-HS(-1)
None* - - No No Kolomogorov-Smirnov -
Optimal 0.674 add 16 No No Kolomogorov-Smirnov -
Lower Alternate 0.617 add 16 No No Kolomogorov-Smirnov -
Upper Alternate 0.73 add 16 No No Kolomogorov-Smirnov -
*Used optimal transformation, 2-Sample T-Test with unequla variance, 'significant' result

HS(0)-HS(-2)
None - - No No Kolomogorov-Smirnov -
Optimal* 0.337 add 21 Yes No 2-Sample T-Test Yes
Lower Alternate 0.281 add 21 Yes No 2-Sample T-Test Yes
Upper Alternate 0.393 add 46 Yes No 2-Sample T-Test Yes

HS(0)-HS(-3)
None - - No No Kolomogorov-Smirnov -
Optimal* 0.562 add 23 Yes Yes 2-Sample T-Test Yes

Stl(0,-1)
None* - - No Yes Mann-Whitney No
Optimal 1.461 add 21 No Yes Mann-Whitney No
Lower Alternate 1.404 add 21 No Yes Mann-Whitney No
Upper Alternate 1.517 add 21 No Yes Mann-Whitney No

Stl(0,-1-2)
None* - - No No Kolomogorov-Smirnov -
Optimal 1.573 add 34 No No Kolomogorov-Smirnov -
Lower Alternate 1.516 add 34 No No Kolomogorov-Smirnov -
Upper Alternate 1.629 add 34 No No Kolomogorov-Smirnov -
*Used upper alternative transformation, 2-Sample T-Test with unequal variance, 'significant' results

Stl(0,-1-2,-3)
None - - No No Kolomogorov-Smirnov -
Optimal* 2.472 add 77 Yes No 2-Sample T-Test No
Lower Alternate 2.416 add 77 Yes No 2-Sample T-Test No
Upper Alternate 2.529 add 77 Yes No 2-Sample T-Test No

HNA(0)
None - - No No Kolomogorov-Smirnov -
Optimal* -0.337 add 1 No Yes Mann-Whitney Yes
Lower Alternate -0.393 add 1 No Yes Mann-Whitney Yes
Upper Alternate -0.281 add 1 No Yes Mann-Whitney Yes
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

HNA(-1)
None* - - No No Kolomogorov-Smirnov -
Optimal -0.675 add 1 No No Kolomogorov-Smirnov -
Lower Alternate -0.731 add 1 No No Kolomogorov-Smirnov -
Upper Alternate -0.618 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute

HNA(-2)
None - - No No Kolomogorov-Smirnov -
Optimal* -0.786 add 1 No Yes Mann-Whitney Yes
Lower Alternate -0.843 add 1 No Yes Mann-Whitney Yes
Upper Alternate -0.729 add 1 No Yes Mann-Whitney Yes

HNA(-3)
None - - No No Kolomogorov-Smirnov -
Optimal* -1.012 add 1 No Yes Mann-Whitney No
Lower Alternative -1.068 add 1 No Yes Mann-Whitney No
Upper Alternative -0.955 add 1 No Yes Mann-Whitney No

HN(0)

None* - - No No Kolomogorov-Smirnov -
Optimal -1.124 add 1 No No Kolomogorov-Smirnov -
Lower Alternate -1.18 add 1 No No Kolomogorov-Smirnov -
Upper Alternate -1.067 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, likely signficant

HN(0,-1)
None* - - No No Kolomogorov-Smirnov -
Optimal -0.113 add 1 No No Kolomogorov-Smirnov -
Lower Alternate -0.17 add 1 No No Kolomogorov-Smirnov -
Upper Alternate -0.056 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, likely signficant

HN(0,-1,-2)
None - - No No Kolomogorov-Smirnov -
Optimal* 0.113 add 1 No Yes Mann-Whitney Yes
Lower Alternate 0.056 add 1 No Yes Mann-Whitney Yes
Upper Alternate 0.17 add 1 No Yes Mann-Whitney Yes

HN(0,-1-2,-3)
None - - No No Kolomogorov-Smirnov -
Optimal* 0.337 add 1 No Yes Mann-Whitney Yes
Lower Alternate 0.281 add 1 No Yes Mann-Whitney Yes
Upper Alternate 0.393 add 1 No Yes Mann-Whitney Yes
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

HNW(0)
None* - - No No Kolomogorov-Smirnov -
Common -3.82 add 1 No No Kolomogorov-Smirnov -
Optimal -3.876 add 1 No No Kolomogorov-Smirnov -
Alternate -3.764 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, likely significant

HNW(0,-1)
None* - - No No Kolomogorov-Smirnov -
Common -1.236 add 1 No No Kolomogorov-Smirnov -
Optimal -1.293 add 1 No No Kolomogorov-Smirnov -
Alternate -1.18 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, likely significant

HNW(0,-1,-2)
None - - No No Kolomogorov-Smirnov -
Optimal -0.337 add 1 No No Kolomogorov-Smirnov -
Lower Alternate* -0.393 add 1 No Yes Mann-Whitney Yes
Upper Alternate -0.281 add 1 No No Kolomogorov-Smirnov -

HNW(0,-1,-2-3)
None* - - No Yes Mann-Whitney Yes
Optimal 0.113 add 1 No Yes Mann-Whitney Yes
Lower Alternate 0.056 add 1 No Yes Mann-Whitney Yes
Upper Alternate 0.17 add 1 No Yes Mann-Whitney Yes

HND(0)
None* - - No No Kolomogorov-Smirnov -
Optimal -0.562 add 1 No No Kolomogorov-Smirnov -
Lower Alternate -0.618 add 1 No No Kolomogorov-Smirnov -
Upper Alternate -0.506 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, likely significant

HND(0,-1)
None* - - No No Kolomogorov-Smirnov -
Optimal 0 add 1 No No Kolomogorov-Smirnov -
Lower Alternate -0.056 add 1 No No Kolomogorov-Smirnov -
Upper Alternate 0.056 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, likely significant
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Old Snow and New Snow Wet Avalanche Day Hypothesis Testing Results

Transformation Lambda
Constant 
(values>zero)

Normal 
Distribution?

Equal 
Variance? Mean/Median Test

Significantly 
Different?

HND(0-1,-2)
None* - - No Yes Mann-Whitney Yes
Optimal 0.225 add 1 No Yes Mann-Whitney Yes
Lower Alternate 0.169 add 1 No Yes Mann-Whitney No
Upper Alternate 0.282 add 1 No Yes Mann-Whitney No

HND(0-1,-2-3)
None* - - No No Kolomogorov-Smirnov -
Optimal 0.562 add 1 No No Kolomogorov-Smirnov -
Lower Alternate 0.506 add 1 No No Kolomogorov-Smirnov -
Upper Alternate 0.618 add 1 No No Kolomogorov-Smirnov -
*Used non-transformed data, 2-Sample T-Test with unequal variance, could not compute, 'significant' result
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“OLD SNOW BINOMIAL LOGISTIC REGRESSION RESULTS” 

 
The following charts provide the old snow binomial logistic regression results.  Each 
significant old snow variable was entered into the binomial logistic regression equation 
individually and in groups of two and the resulting p-values, odds ratios and percent 
concordant pairs are tabulated in the charts.
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

Variable       
P-Value

Variable       
Odds Ratio

Percent 
Concordant 
Pairs

Day (of year) 0.021 1.05 62.70%

MaxT(0) 0 1.07 72.60%

MaxT(-1) 0.013 1.1 64.00%

MaxT(-2) 0.189 1.04 55.50%

AvgMaxT(0,-1) 0.001 1.17 70.20%

AvgMaxT(0,-1,-2) 0.004 1.05 66.60%

AvgMaxT(0,-1,-2,-3) 0.019 1.11 62.80%

MinT(0) 0.007 1.18 67.60%

MinT(-1) 0.009 1.01 63.80%

MinT(-2) 0.066 1.01 59.80%

AvgMinT(0,-1) 0.002 1.01 68.10%

AvgMinT(0,-1,-2) 0.004 1.01 66.50%

AvgMinT(0,-1,-2,-3) 0.013 1.01 64.10%

AvgT(0) 0 1.01 73.30%

AvgT(-1) 0.006 1.02 65.40%

AvgT(-2) 0.09 1.03 58.10%

AvgAvgT(0,-1) 0 1.01 70.30%

AvgAvgT(0,-1,-2) 0.003 1.02 67.60%

AvgAvgT(0,-1,-2,-3) 0.011 1.02 64.60%

DDMaxT(0) 0 1.07 72.60%

DDMaxT(0,-1) 0.001 1.03 70.10%

DDMaxT(0,-1,-2) 0.005 1.02 66.70%

DDMaxT(0,-1,-2,-3) 0.019 1.03 62.90%

DDAvgT(0) 0 1.01 73.30%

DDAvgT(0,-1) 0 1.01 70.30%

DDAvgT(0,-1,-2) 0.003 1 67.60%

DDAvgT(0,-1,-2,-3) 0.011 1.01 64.80%

HS(0)-HS(-1) 0.009 0.88 55.60%

HS(0)-HS(-2) 0.001 0.9 68.10%

HS(0)-HS(-3) 0.006 0.93 65.00%

Stl(0,-1) 0.009 0.88 55.60%

Stl(0,-1,-2) 0.005 0.92 66.70%

Stl(0,-1,-2,-3) 0.035 0.95 63.70%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in 
Binomial Logistic 
Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Day, MaxT(0) 0.19 1.03 0.002 1.06 74.20%
Day, MaxT(-1) 0.052 1.05 0.03 1.08 66.70%
Day, MaxT(-2) 0.031 1.05 0.312 1.03 63.40%
Day, AvgMaxT(0,-1) 0.083 1.04 0.005 1.15 71.00%
Day, AvgMaxT(0,-1-2) 0.05 1.05 0.014 1.05 69.20%
Day, AvgMaxT(0,-1,-2,-3) 0.042 1.05 0.056 1.09 67.30%
Day, MinT(0) 0.038 1.05 0.016 1.16 71.20%
Day, MinT(-1) 0.04 1.05 0.016 1.01 67.60%
Day, MinT(-2) 0.027 1.05 0.088 1.01 65.60%
Day, AvgMinT(0,-1) 0.032 1.05 0.004 1.01 70.70%
Day, AvgMinT(0,-1,-2) 0.025 1.05 0.007 1.01 70.50%
Day, AvgMinT(0,-1,-2,-3) 0.024 1.05 0.022 1.01 68.60%
Day, AvgT(0) 0.154 1.04 0.001 1.01 73.80%
Day, AvgT(-1) 0.053 1.05 0.013 1.02 67.30%
Day, AvgT(-2) 0.031 1.05 0.146 1.02 64.10%
Day, AvgAvgT(0,-1) 0.069 1.04 0.002 1.01 71.50%
Day, AvgAvgT(0,-1,-2) 0.042 1.05 0.008 1.02 69.50%
Day, AvgAvgT(0,-1,-2,-3) 0.037 1.05 0.027 1.02 68.50%
Day, DDMaxT(0) 0.19 1.03 0.002 1.06 74.20%
Day, DDMaxT(0,-1) 0.087 1.04 0.004 1.02 71.10%
Day, DDMaxT(0,-1,-2) 0.05 1.05 0.015 1.02 69.40%
Day, DDMaxT(0,-1,-2,-3) 0.043 1.05 0.054 1.02 67.30%
Day, DDAvgT(0) 0.154 1.04 0.001 1.01 73.80%
Day, DDAvgT(0,-1) 0.069 1.04 0.002 1 71.50%
Day, DDAvgT(0,-1,-2) 0.042 1.05 0.008 1 69.50%
Day, DDAvgT(0,-1,-2,-3) 0.037 1.05 0.028 1.01 68.30%
Day, HS(0)-HS(-1) 0.039 1.05 0.018 0.89 67.30%
Day, HS(0)-HS(-2) 0.035 1.05 0.002 0.9 72.60%
Day, HS(0)-HS(-3) 0.033 1.05 0.01 0.94 69.50%
Day, Stl(0,-1) 0.039 1.05 0.018 0.89 67.30%
Day, Stl(0,-1,-2) 0.018 1.06 0.004 0.91 70.90%
Day, Stl(0,-1,-2,-3) 0.02 1.05 0.034 0.95 67.80%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MaxT(0), AvgMaxT(0,-1) 0.068 1.07 0.986 1 72.60%
MaxT(0), AvgMaxT(0,-1-2) 0.01 1.08 0.672 0.99 74.10%
MaxT(0), AvgMaxT(0,-1,-2,-3) 0.002 1.09 0.367 0.94 74.00%
MaxT(0), MinT(0) 0.007 1.06 0.573 1.04 73.70%
MaxT(0), AvgMinT(0,-1) 0.015 1.06 0.443 1 73.60%
MaxT(0), AvgMinT(0,-1,-2) 0.008 1.06 0.609 1 73.60%
MaxT(0), AvgMinT(0,-1,-2,-3) 0.003 1.07 0.84 1 73.30%
MaxT(0), AvgT(0) 0.719 1.02 0.228 1.01 73.80%
MaxT(0), AvgAvgT(0,-1) 0.121 1.05 0.474 1 73.20%
MaxT(0), AvgAvgT(0,-1,-2) 0.017 1.07 0.929 1 73.40%
MaxT(0), AvgAvgT(0,-1,-2,-3) 0.004 1.08 0.763 1 73.50%
MaxT(0), DDMaxT(0) na na na na na
MaxT(0), DDMaxT(0,-1) 0.088 1.07 0.891 1 73.60%
MaxT(0), DDMaxT(0,-1,-2) 0.01 1.08 0.642 0.99 74.00%
MaxT(0), DDMaxT(0,-1,-2,-3) 0.002 1.09 0.378 0.98 73.90%
MaxT(0), DDAvgT(0) 0.719 1.02 0.228 1.01 73.80%
MaxT(0), DDAvgT(0,-1) 0.124 1.05 0.467 1 73.20%
MaxT(0), DDAvgT(0,-1,-2) 0.017 1.07 0.922 1 73.20%
MaxT(0), DDAvgT(0,-1,-2,-3) 0.004 1.08 0.75 1 73.60%
MaxT(0), Day 0.002 1.02 0.19 0.98 74.20%
MaxT(0), MaxT(-1) 0.003 1.07 0.987 1 72.60%
MaxT(0), MaxT(-2) 0 1.08 0.401 0.96 73.90%
MaxT(0), MinT(-1) 0.004 1.02 0.781 0.99 73.50%
MaxT(0), MinT(-2) 0.001 1.07 0.948 1 73.20%
MaxT(0), AvgT(-1) 0.006 1.07 0.821 1 73.50%
MaxT(0), AvgT(-2) 0.001 1.08 0.685 0.99 73.80%
MaxT(0), HS(0)-HS(-1) 0.001 1.06 0.033 0.89 75.10%
MaxT(0), HS(0)-HS(-2) 0.001 1.07 0.005 0.9 77.30%
MaxT(0), HS(0)-HS(-3) 0.002 1.06 0.12 0.96 74.20%
MaxT(0), Stl(0,-1) 0.001 1.06 0.033 0.89 75.10%
MaxT(0), Stl(0,-1,-2) 0 1.07 0.015 0.92 76.40%
MaxT(0), Stl(0,-1,-2,-3) 0 1.07 0.102 0.96 74.60%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MaxT(-1), AvgMaxT(0,-1) 0.079 0.84 0.004 1.41 73.70%
MaxT(-1), AvgMaxT(0,-1-2) 0.667 0.96 0.104 1.07 67.10%
MaxT(-1), AvgMaxT(0,-1,-2,-3) 0.375 1.07 0.637 1.04 65.10%
MaxT(-1), MinT(-1) 0.35 1.05 0.231 1 65.80%
MaxT(-1), AvgMinT(0,-1) 0.615 1.03 0.044 1.01 68.40%
MaxT(-1), AvgMinT(0,-1,-2) 0.559 1.03 0.101 1.01 67.20%
MaxT(-1), AvgMinT(0,-1,-2,-3) 0.279 1.06 0.265 1.01 66.00%
MaxT(-1), AvgT(-1) 0.718 0.96 0.196 1.02 65.60%
MaxT(-1), AvgAvgT(0,-1) 0.179 0.9 0.004 1.02 71.90%
MaxT(-1), AvgAvgT(0,-1,-2) 0.664 0.97 0.058 1.03 67.90%
MaxT(-1), AvgAvgT(0,-1,-2,-3) 0.527 1.04 0.315 1.01 65.50%
MaxT(-1), DDMaxT(0,-1) 0.057 0.83 0.002 1.06 73.50%
MaxT(-1), DDMaxT(0,-1,-2) 0.694 0.97 0.115 1.03 66.80%
MaxT(-1), DDMaxT(0,-1,-2,-3) 0.385 1.06 0.62 1.01 64.80%
MaxT(-1), DDAvgT(0,-1) 0.177 0.9 0.003 1.01 71.80%
MaxT(-1), DDAvgT(0,-1,-2) 0.658 0.97 0.057 1.01 68.10%
MaxT(-1), DDAvgT(0,-1,-2,-3) 0.523 1.04 0.321 1 65.40%
MaxT(-1), Day 0.03 1.08 0.052 1.05 66.70%
MaxT(-1), MaxT(0) 0.987 1 0.003 1.07 72.60%
MaxT(-1), MaxT(-2) 0.027 1.13 0.424 0.96 65.90%
MaxT(-1), MinT(0) 0.245 1.05 0.069 1.13 70.30%
MaxT(-1), MinT(-2) 0.087 1.08 0.724 1 64.80%
MaxT(-1), AvgT(0) 0.877 0.99 0.002 1.01 73.40%
MaxT(-1), AvgT(-2) 0.068 1.1 0.83 1 64.90%
MaxT(-1), DDMaxT(0) 0.987 1 0.003 1.07 72.60%
MaxT(-1), DDAvgT(0) 0.877 0.99 0.002 1.01 73.40%
MaxT(-1), HS(0)-HS(-1) 0.004 1.12 0.002 0.85 70.30%
MaxT(-1), HS(0)-HS(-2) 0.01 1.1 0.001 0.89 74.70%
MaxT(-1), HS(0)-HS(-3) 0.054 1.08 0.031 0.94 68.60%
MaxT(-1), Stl(0,-1) 0.004 1.12 0.002 0.85 70.30%
MaxT(-1), Stl(0,-1,-2) 0.01 1.1 0.004 0.91 72.70%
MaxT(-1), Stl(0,-1,-2,-3) 0.013 1.1 0.044 0.95 69.10%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MaxT(-2), MinT(-2) 0.967 1 0.197 1.01 60.30%
MaxT(-2), AvgT(-2) 0.39 0.92 0.174 1.06 60.50%
MaxT(-2), Day 0.312 1.03 0.031 1.05 63.40%
MaxT(-2), MaxT(0) 0.401 0.96 0 1.08 73.90%
MaxT(-2), MaxT(-1) 0.424 0.96 0.027 1.13 65.90%
MaxT(-2), AvgMaxT(0,-1) 0.165 0.93 0.001 1.25 71.50%
MaxT(-2), AvgMaxT(0,-1-2) 0.016 0.83 0.001 1.15 71.50%
MaxT(-2), AvgMaxT(0,-1,-2,-3) 0.065 0.86 0.009 1.34 67.60%
MaxT(-2), MinT(0) 0.827 1.01 0.013 1.17 70.00%
MaxT(-2), MinT(-1) 0.685 0.98 0.022 1.01 65.10%
MaxT(-2), AvgMinT(0,-1) 0.623 0.98 0.004 1.01 67.80%
MaxT(-2), AvgMinT(0,-1,-2) 0.414 0.96 0.008 1.01 66.60%
MaxT(-2), AvgMinT(0,-1,-2,-3) 0.529 0.97 0.03 1.01 64.20%
MaxT(-2), AvgT(0) 0.384 0.96 0 1.01 73.00%
MaxT(-2), AvgT(-1) 0.256 0.94 0.009 1.03 66.40%
MaxT(-2), AvgAvgT(0,-1) 0.136 0.93 0 1.02 70.70%
MaxT(-2), AvgAvgT(0,-1,-2) 0.036 0.87 0.001 1.05 69.40%
MaxT(-2), AvgAvgT(0,-1,-2,-3) 0.089 0.88 0.007 1.05 66.90%
MaxT(-2), DDMaxT(0) 0.401 0.96 0 1.08 73.90%
MaxT(-2), DDMaxT(0,-1) 0.142 0.93 0.001 1.04 71.40%
MaxT(-2), DDMaxT(0,-1,-2) 0.018 0.83 0.001 1.06 71.50%
MaxT(-2), DDMaxT(0,-1,-2,-3) 0.061 0.85 0.008 1.07 67.50%
MaxT(-2), DDAvgT(0) 0.384 0.96 0 1.01 73.00%
MaxT(-2), DDAvgT(0,-1) 0.134 0.84 0 1 70.70%
MaxT(-2), DDAvgT(0,-1,-2) 0.036 0.86 0.001 1.01 69.30%
MaxT(-2), DDAvgT(0,-1,-2,-3) 0.091 0.88 0.007 1.01 66.80%
MaxT(-2), HS(0)-HS(-1) 0.061 1.07 0.003 0.86 67.80%
MaxT(-2), HS(0)-HS(-2) 0.031 1.08 0 0.88 73.70%
MaxT(-2), HS(0)-HS(-3) 0.255 1.04 0.008 0.93 68.60%
MaxT(-2), Stl(0,-1) 0.061 1.07 0.003 0.86 67.80%
MaxT(-2), Stl(0,-1,-2) 0.054 1.07 0.002 0.9 71.70%
MaxT(-2), Stl(0,-1,-2,-3) 0.124 1.05 0.026 0.95 67.70%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMaxT(0,-1), MaxT(0) 0.986 1 0.068 1.07 72.60%
AvgMaxT(0,-1), MaxT(-1) 0.004 1.41 0.079 0.84 73.70%
AvgMaxT(0,-1), AvgMaxT(0,-1-2) 0.029 1.39 0.224 0.93 71.60%
AvgMaxT(0,-1), AvgMaxT(0,-1,-2,-3) 0.005 1.34 0.14 0.86 72.10%
AvgMaxT(0,-1), MinT(0) 0.036 1.13 0.375 1.07 71.50%
AvgMaxT(0,-1), MinT(-1) 0.023 1.17 0.923 1 70.50%
AvgMaxT(0,-1), AvgMinT(0,-1) 0.095 1.12 0.355 1 70.70%
AvgMaxT(0,-1), AvgMinT(0,-1,-2) 0.053 1.14 0.616 1 70.10%
AvgMaxT(0,-1), AvgMinT(0,-1,-2,-3) 0.017 1.17 0.919 1 70.20%
AvgMaxT(0,-1), AvgT(0) 0.981 1 0.036 1.01 73.30%
AvgMaxT(0,-1), AvgT(-1) 0.029 1.26 0.432 0.99 71.50%
AvgMaxT(0,-1), AvgAvgT(0,-1) 0.991 1 0.212 1.01 70.40%
AvgMaxT(0,-1), AvgAvgT(0,-1,-2) 0.117 1.18 0.909 1 70.30%
AvgMaxT(0,-1), AvgAvgT(0,-1,-2,-3) 0.02 1.22 0.566 0.99 71.20%
AvgMaxT(0,-1), DDMaxT(0) 0.986 1 0.068 1.07 72.60%
AvgMaxT(0,-1), DDMaxT(0,-1) 0.085 0.29 0.055 1.27 70.20%
AvgMaxT(0,-1), DDMaxT(0,-1,-2) 0.025 1.41 0.195 0.97 71.80%
AvgMaxT(0,-1), DDMaxT(0,-1,-2,-3) 0.006 1.33 0.148 0.97 72.00%
AvgMaxT(0,-1), DDAvgT(0) 0.981 1 0.036 1.01 73.30%
AvgMaxT(0,-1), DDAvgT(0,-1) 0.98 1 0.206 1 70.40%
AvgMaxT(0,-1), DDAvgT(0,-1,-2) 0.119 1.18 0.92 1 70.30%
AvgMaxT(0,-1), DDAvgT(0,-1,-2,-3) 0.02 1.22 0.551 1 71.20%
AvgMaxT(0,-1), Day 0.005 1.15 0.083 1.04 71.00%
AvgMaxT(0,-1), MaxT(-2) 0.001 1.25 0.165 0.93 71.50%
AvgMaxT(0,-1), MinT(-2) 0.005 1.18 0.848 1 70.50%
AvgMaxT(0,-1), AvgT(-2) 0.003 1.22 0.383 0.98 71.40%
AvgMaxT(0,-1), HS(0)-HS(-1) 0.001 1.17 0.007 0.86 73.90%
AvgMaxT(0,-1), HS(0)-HS(-2) 0.002 1.16 0.003 0.9 76.20%
AvgMaxT(0,-1), HS(0)-HS(-3) 0.008 1.14 0.09 0.95 72.00%
AvgMaxT(0,-1), Stl(0,-1) 0.001 1.17 0.007 0.86 73.90%
AvgMaxT(0,-1), Stl(0,-1,-2) 0.001 1.17 0.01 0.92 74.60%
AvgMaxT(0,-1), Stl(0,-1,-2,-3) 0.001 1.17 0.068 0.96 72.90%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMaxT(0,-1,-2), MaxT(0) 0.672 0.99 0.01 1.08 74.10%
AvgMaxT(0,-1,-2), MaxT(-1) 0.104 1.07 0.667 0.96 67.10%
AvgMaxT(0,-1,-2), AvgMaxT(0,-1) 0.224 0.93 0.029 1.39 71.60%
AvgMaxT(0,-1,-2), AvgMaxT(0,-1,-2,-3) 0.017 1.19 0.082 0.73 69.80%
AvgMaxT(0,-1,-2), MinT(0) 0.131 1.03 0.153 1.11 70.30%
AvgMaxT(0,-1,-2), MinT(-1) 0.129 1.04 0.508 1 67.20%
AvgMaxT(0,-1,-2), AvgMinT(0,-1) 0.357 1.02 0.122 1.01 69.40%
AvgMaxT(0,-1,-2), AvgMinT(0,-1,-2) 0.298 1.03 0.298 1.01 67.70%
AvgMaxT(0,-1,-2), AvgMinT(0,-1,-2,-3) 0.113 1.04 0.66 1 66.70%
AvgMaxT(0,-1,-2), AvgT(0) 0.67 0.99 0.005 1.01 73.00%
AvgMaxT(0,-1,-2), AvgT(-1) 0.341 1.04 0.724 1.01 66.90%
AvgMaxT(0,-1,-2), AvgAvgT(0,-1) 0.316 0.016 0.016 1.02 70.50%
AvgMaxT(0,-1,-2), AvgAvgT(0,-1,-2) 0.91 0.99 0.296 1.03 67.50%
AvgMaxT(0,-1,-2), AvgAvgT(0,-1,-2,-3) 0.179 1.06 0.848 1 66.90%
AvgMaxT(0,-1,-2), DDMaxT(0) 0.672 0.99 0.01 1.08 74.10%
AvgMaxT(0,-1,-2), DDMaxT(0,-1) 0.145 0.92 0.016 1.07 71.60%
AvgMaxT(0,-1,-2), DDMaxT(0,-1,-2) 0.2 3.04 0.22 0.62 67.40%
AvgMaxT(0,-1,-2), DDMaxT(0,-1,-2,-3) 0.019 1.18 0.09 0.93 69.70%
AvgMaxT(0,-1,-2), DDAvgT(0) 0.67 0.99 0.005 1.01 73.00%
AvgMaxT(0,-1,-2), DDAvgT(0,-1) 0.31 0.96 0.015 1.01 70.30%
AvgMaxT(0,-1,-2), DDAvgT(0,-1,-2) 0.897 0.99 0.288 1.01 67.60%
AvgMaxT(0,-1,-2), DDAvgT(0,-1,-2,-3) 0.174 1.06 0.834 1 66.90%
AvgMaxT(0,-1.-2), Day 0.014 1.05 0.05 1.05 69.20%
AvgMaxT(0,-1,-2), MaxT(-2) 0.001 1.15 0.016 0.83 71.50%
AvgMaxT(0,-1,-2), MinT(-2) 0.029 1.06 0.895 1 66.80%
AvgMaxT(0,-1,-2), AvgT(-2) 0.008 1.1 0.166 0.96 69.30%
AvgMaxT(0,-1,-2), HS(0)-HS(-1) 0.002 1.06 0.004 0.85 73.00%
AvgMaxT(0,-1,-2), HS(0)-HS(-2) 0.002 1.06 0.001 0.89 75.80%
AvgMaxT(0,-1,-2), HS(0)-HS(-3) 0.021 1.04 0.047 0.95 70.30%
AvgMaxT(0,-1,-2), Stl(0,-1) 0.002 1.06 0.004 0.85 73.00%
AvgMaxT(0,-1,-2), Stl(0,-1,-2) 0.003 1.06 0.005 0.91 73.60%
AvgMaxT(0,-1,-2), Stl(0,-1,-2,-3) 0.004 1.05 0.048 0.95 70.80%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd 
Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMaxT(0,-1,-2,-3), MaxT(0) 0.367 0.94 0.002 1.09 74.00%
AvgMaxT(0,-1,-2,-3), MaxT(-1) 0.637 1.04 0.375 1.07 65.10%
AvgMaxT(0,-1,-2,-3), AvgMaxT(0,-1) 0.14 0.86 0.005 1.34 72.10%
AvgMaxT(0,-1,-2,-3), AvgMaxT(0,-1-2) 0.082 0.73 0.017 1.19 69.80%
AvgMaxT(0,-1,-2,-3), MinT(0) 0.356 1.05 0.067 1.13 69.80%
AvgMaxT(0,-1,-2,-3), AvgMinT(0,-1) 0.789 1.02 0.035 1.01 68.10%
AvgMaxT(0,-1,-2,-3), AvgMinT(0,-1,-2) 0.834 1.02 0.089 1.01 66.70%
AvgMaxT(0,-1,-2,-3), AvgMinT(0,-1,-2,-3) 0.532 1.05 0.316 1.01 64.70%
AvgMaxT(0,-1,-2,-3), AvgT(0) 0.368 0.94 0.001 1.02 73.10%
AvgMaxT(0,-1,-2,-3), AvgT(-1) 0.985 1 0.149 1.02 65.40%
AvgMaxT(0,-1,-2,-3), AvgAvgT(0,-1) 0.151 0.88 0.002 1.02 70.40%
AvgMaxT(0,-1,-2,-3), AvgAvgT(0,-1,-2) 0.187 0.85 0.019 1.05 68.50%
AvgMaxT(0,-1,-2,-3), AvgAvgT(0,-1,-2,-3) 0.702 0.94 0.702 1.03 65.00%
AvgMaxT(0,-1,-2,-3), DDMaxT(0) 0.367 0.94 0.002 1.09 74.00%
AvgMaxT(0,-1,-2,-3), DDMaxT(0,-1) 0.108 0.85 0.003 1.05 71.90%
AvgMaxT(0,-1,-2,-3), DDMaxT(0,-1,-2) 0.091 0.73 0.02 1.08 69.80%
AvgMaxT(0,-1,-2,-3), DDMaxT(0,-1,-2,-3) 0.083 0 0.08 14.83 65.80%
AvgMaxT(0,-1,-2,-3), DDAvgT(0) 0.368 0.94 0.001 1.02 73.10%
AvgMaxT(0,-1,-2,-3), DDAvgT(0,-1) 0.149 0.88 0.002 1.01 70.40%
AvgMaxT(0,-1,-2,-3), DDAvgT(0,-1,-2) 0.183 0.85 0.018 1.01 68.50%
AvgMaxT(0,-1,-2,-3), DDAvgT(0,-1,-2,-3) 0.707 0.94 0.271 1.01 65.10%
AvgMaxT(0,-1,-2,-3), Day 0.056 1.09 0.042 1.05 67.30%
AvgMaxT(0,-1,-2,-3), MaxT(-2) 0.009 1.34 0.065 0.86 67.60%
AvgMaxT(0,-1,-2,-3), MinT(-1) 0.44 1.05 0.199 1 65.40%
AvgMaxT(0,-1,-2,-3), MinT(-2) 0.16 1.1 0.738 1 63.50%
AvgMaxT(0,-1,-2,-3), AvgT(-2) 0.084 1.18 0.483 0.98 64.30%
AvgMaxT(0,-1,-2,-3), HS(0)-HS(-1) 0.006 1.14 0.003 0.85 71.60%
AvgMaxT(0,-1,-2,-3), HS(0)-HS(-2) 0.006 1.14 0 0.88 75.00%
AvgMaxT(0,-1,-2,-3), HS(0)-HS(-3) 0.043 1.1 0.02 0.94 69.30%
AvgMaxT(0,-1,-2,-3), Stl(0,-1) 0.006 1.14 0.003 0.85 71.60%
AvgMaxT(0,-1,-2,-3), Stl(0,-1,-2) 0.008 1.14 0.003 0.9 73.10%
AvgMaxT(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.015 1.12 0.031 0.95 70.20%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(0), MaxT(0) 0.573 1.04 0.007 1.06 73.70%
MinT(0), AvgMaxT(0,-1) 0.375 1.07 0.036 1.13 71.50%
MinT(0), AvgMaxT(0,-1-2) 0.153 1.11 0.131 1.03 70.30%
MinT(0), AvgMaxT(0,-1,-2,-3) 0.067 1.13 0.356 1.05 69.80%
MinT(0), AvgMinT(0,-1) 0.929 1.01 0.191 1.01 68.50%
MinT(0), AvgMinT(0,-1,-2) 0.375 1.09 0.331 1.01 68.70%
MinT(0), AvgMinT(0,-1,-2,-3) 0.137 1.13 0.608 1 68.50%
MinT(0), AvgT(0) 0.176 0.86 0.002 1.02 74.40%
MinT(0), AvgAvgT(0,-1) 0.899 0.99 0.023 1.01 70.40%
MinT(0), AvgAvgT(0,-1,-2) 0.362 1.08 0.154 1.02 69.50%
MinT(0), AvgAvgT(0,-1,-2,-3) 0.135 1.12 0.385 1.01 69.20%
MinT(0), DDMaxT(0) 0.573 1.04 0.007 1.06 73.70%
MinT(0), DDMaxT(0,-1) 0.394 1.06 0.028 1.02 71.50%
MinT(0), DDMaxT(0,-1,-2) 0.151 1.11 0.139 1.01 70.30%
MinT(0), DDMaxT(0,-1,-2,-3) 0.069 1.13 0.348 1.01 69.90%
MinT(0), DDAvgT(0) 0.176 0.86 0.002 1.02 74.40%
MinT(0), DDAvgT(0,-1) 0.894 0.99 0.023 1 70.30%
MinT(0), DDAvgT(0,-1,-2) 0.364 1.08 0.151 1 69.40%
MinT(0), DDAvgT(0,-1,-2,-3) 0.134 1.12 0.392 1 69.30%
MinT(0), Day 0.016 1.16 0.038 1.05 71.20%
MinT(0), MaxT(-1) 0.069 1.13 0.245 1.05 70.30%
MinT(0), MaxT(-2) 0.013 1.17 0.827 1.01 70.00%
MinT(0), MinT(-1) 0.143 1.12 0.43 1 68.60%
MinT(0), MinT(-2) 0.031 1.16 0.621 1 69.00%
MinT(0), AvgT(-1) 0.162 1.11 0.227 1.01 69.10%
MinT(0), AvgT(-2) 0.023 1.16 0.676 1.01 69.50%
MinT(0), HS(0)-HS(-1) 0.008 1.16 0.013 0.88 70.90%
MinT(0), HS(0)-HS(-2) 0.013 1.16 0.004 0.9 75.00%
MinT(0), HS(0)-HS(-3) 0.02 1.15 0.031 0.94 72.30%
MinT(0), Stl(0,-1) 0.008 1.16 0.013 0.88 70.90%
MinT(0), Stl(0,-1,-2) 0.008 1.17 0.01 0.92 73.80%
MinT(0), Stl(0,-1,-2,-3) 0.008 1.17 0.058 0.96 71.90%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(-1), MaxT(-1) 0.231 1 0.35 1.05 65.80%
MinT(-1), AvgMaxT(0,-1) 0.923 1 0.023 1.17 70.50%
MinT(-1), AvgMaxT(0,-1-2) 0.508 1 0.129 1.04 67.20%
MinT(-1), AvgMinT(0,-1) 0.25 0.99 0.036 1.02 69.20%
MinT(-1), AvgMinT(0,-1,-2) 0.728 1 0.16 1.01 66.70%
MinT(-1), AvgMinT(0,-1,-2,-3) 0.415 1 0.595 1 65.20%
MinT(-1), AvgT(-1) 0.851 1 0.303 1.02 65.40%
MinT(-1), AvgAvgT(0,-1) 0.149 0.99 0.004 1.02 72.00%
MinT(-1), AvgAvgT(0,-1,-2) 0.804 1 0.083 1.03 68.00%
MinT(-1), AvgAvgT(0,-1,-2,-3) 0.442 1 0.4 1.01 65.30%
MinT(-1), DDMaxT(0,-1) 0.978 1 0.017 1.03 70.10%
MinT(-1), DDMaxT(0,-1,-2) 0.497 1 0.138 1.02 67.20%
MinT(-1), DDMaxT(0,-1,-2,-3) 0.203 1 0.43 1.01 65.30%
MinT(-1), DDAvgT(0,-1) 0.146 0.99 0.004 1.01 72.00%
MinT(-1), DDAvgT(0,-1,-2) 0.796 1 0.081 1.01 68.00%
MinT(-1), DDAvgT(0,-1,-2,-3) 0.437 1 0.406 1 65.20%
MinT(-1), Day 0.016 1.01 0.04 1.05 67.60%
MinT(-1), MaxT(0) 0.781 1 0.004 1.07 73.50%
MinT(-1), MaxT(-2) 0.022 1.01 0.685 0.98 65.10%
MinT(-1), AvgMaxT(0,-1,-2,-3) 0.199 1 0.44 1.05 65.40%
MinT(-1), MinT(0) 0.43 1 0.143 1.12 68.60%
MinT(-1), MinT(-2) 0.068 1.01 0.942 1 64.40%
MinT(-1), AvgT(0) 0.616 1 0.002 1.01 73.80%
MinT(-1), AvgT(-2) 0.048 1.01 0.807 0.99 64.70%
MinT(-1), DDMaxT(0) 0.781 1 0.004 1.07 73.50%
MinT(-1), DDAvgT(0) 0.616 1 0.002 1.01 73.80%
MinT(-1), HS(0)-HS(-1) 0.005 1.01 0.005 0.86 69.40%
MinT(-1), HS(0)-HS(-2) 0.007 1.01 0.001 0.89 73.50%
MinT(-1), HS(0)-HS(-3) 0.038 1.01 0.031 0.94 69.30%
MinT(-1), Stl(0,-1) 0.005 1.01 0.005 0.86 69.40%
MinT(-1), Stl(0,-1,-2) 0.006 1.01 0.004 0.91 71.50%
MinT(-1), Stl(0,-1,-2,-3) 0.008 1.01 0.043 0.95 69.00%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(-2), MaxT(-2) 0.197 1.01 0.967 1 60.30%
MinT(-2), AvgT(-2) 0.47 1.01 0.974 1 60.00%
MinT(-2), Day 0.088 1.01 0.027 1.05 65.60%
MinT(-2), MaxT(0) 0.948 1 0.001 1.07 73.20%
MinT(-2), MaxT(-1) 0.724 1 0.087 1.08 64.80%
MinT(-2), AvgMaxT(0,-1) 0.848 1 0.005 1.18 70.50%
MinT(-2), AvgMaxT(0,-1-2) 0.895 1 0.029 1.06 66.80%
MinT(-2), AvgMaxT(0,-1,-2,-3) 0.738 1 0.16 1.1 63.50%
MinT(-2), MinT(0) 0.621 1 0.031 1.16 69.00%
MinT(-2), MinT(-1) 0.942 1 0.068 1.01 64.40%
MinT(-2), AvgMinT(0,-1) 0.768 1 0.013 1.01 68.30%
MinT(-2), AvgMinT(0,-1,-2) 0.206 0.98 0.014 1.02 68.40%
MinT(-2), AvgMinT(0,-1,-2,-3) 0.541 0.99 0.091 1.01 64.60%
MinT(-2), AvgT(0) 0.682 1 0 1.01 73.50%
MinT(-2), AvgT(-1) 0.767 1 0.038 1.02 65.80%
MinT(-2), AvgAvgT(0,-1) 0.393 0.99 0.002 1.01 71.20%
MinT(-2), AvgAvgT(0,-1,-2) 0.254 0.99 0.009 1.04 69.30%
MinT(-2), AvgAvgT(0,-1,-2,-3) 0.64 0.99 0.073 1.03 65.40%
MinT(-2), DDMaxT(0) 0.948 1 0.001 1.07 73.20%
MinT(-2), DDMaxT(0,-1) 0.811 1 0.004 1.03 70.70%
MinT(-2), DDMaxT(0,-1,-2) 0.907 1 0.031 1.02 66.80%
MinT(-2), DDMaxT(0,-1,-2,-3) 0.747 1 0.155 1.02 63.40%
MinT(-2), DDAvgT(0) 0.682 1 0 1.01 73.50%
MinT(-2), DDAvgT(0,-1) 0.389 0.99 0.002 1 71.20%
MinT(-2), DDAvgT(0,-1,-2) 0.251 0.99 0.009 1.01 69.50%
MinT(-2), DDAvgT(0,-1,-2,-3) 0.647 0.99 0.075 1.01 65.30%
MinT(-2), HS(0)-HS(-1) 0.025 1.01 0.003 0.86 66.10%
MinT(-2), HS(0)-HS(-2) 0.016 1.02 0 0.88 72.50%
MinT(-2), HS(0)-HS(-3) 0.083 1.01 0.007 0.93 68.30%
MinT(-2), Stl(0,-1) 0.025 1.01 0.003 0.86 66.10%
MinT(-2), Stl(0,-1,-2) 0.03 1.01 0.002 0.91 70.70%
MinT(-2), Stl(0,-1,-2,-3) 0.059 1.01 0.032 0.95 67.20%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMinT(0,-1), MaxT(0) 0.443 1 0.015 1.06 73.60%
AvgMinT(0,-1), MaxT(-1) 0.044 1.01 0.615 1.03 68.40%
AvgMinT(0,-1), AvgMaxT(0,-1) 0.355 1 0.095 1.12 70.70%
AvgMinT(0,-1), AvgMaxT(0,-1-2) 0.122 1.01 0.357 1.02 69.40%
AvgMinT(0,-1), AvgMaxT(0,-1,-2,-3) 0.035 1.01 0.789 1.02 68.10%
AvgMinT(0,-1), MinT(0) 0.191 1.01 0.929 1.01 68.50%
AvgMinT(0,-1), MinT(-1) 0.036 1.02 0.25 0.99 69.20%
AvgMinT(0,-1), AvgMinT(0,-1,-2) 0.201 1.01 0.774 1 68.30%
AvgMinT(0,-1), AvgMinT(0,-1,-2,-3) 0.04 1.01 0.527 1 68.80%
AvgMinT(0,-1), AvgT(0) 0.57 1 0.009 1.02 73.80%
AvgMinT(0,-1), AvgT(-1) 0.129 1.01 0.883 1 68.00%
AvgMinT(0,-1), AvgAvgT(0,-1) 0.596 1 0.052 1.02 70.80%
AvgMinT(0,-1), AvgAvgT(0,-1,-2) 0.34 1.01 0.5 1.01 68.50%
AvgMinT(0,-1), AvgAvgT(0,-1,-2,-3) 0.07 1.01 0.987 1 67.80%
AvgMinT(0,-1), DDMaxT(0) 0.443 1 0.015 1.06 73.60%
AvgMinT(0,-1), DDMaxT(0,-1) 0.39 1 0.075 1.02 70.80%
AvgMinT(0,-1), DDMaxT(0,-1,-2) 0.118 1.01 0.375 1.01 69.40%
AvgMinT(0,-1), DDMaxT(0,-1,-2,-3) 0.035 1.01 0.776 1 68.10%
AvgMinT(0,-1), DDAvgT(0) 0.57 1 0.009 1.02 73.80%
AvgMinT(0,-1), DDAvgT(0,-1) 0.586 1 0.05 1 70.60%
AvgMinT(0,-1), DDAvgT(0,-1,-2) 0.345 1.01 0.493 1 68.50%
AvgMinT(0,-1), DDAvgT(0,-1,-2,-3) 0.069 1.01 0.995 1 67.80%
AvgMinT(0,-1), Day 0.004 1.01 0.032 1.05 70.70%
AvgMinT(0,-1), MaxT(-2) 0.004 1.01 0.623 0.98 67.80%
AvgMinT(0,-1), MinT(-2) 0.013 1.01 0.768 1 68.30%
AvgMinT(0,-1), AvgT(-2) 0.009 1.01 0.689 0.99 68.10%
AvgMinT(0,-1), HS(0)-HS(-1) 0.002 1.01 0.008 0.87 71.60%
AvgMinT(0,-1), HS(0)-HS(-2) 0.003 1.01 0.003 0.9 74.20%
AvgMinT(0,-1), HS(0)-HS(-3) 0.01 1.01 0.051 0.95 71.60%
AvgMinT(0,-1), Stl(0,-1) 0.002 1.01 0.008 0.87 71.60%
AvgMinT(0,-1), Stl(0,-1,-2) 0.002 1.01 0.008 0.92 72.80%
AvgMinT(0,-1), Stl(0,-1,-2,-3) 0.002 1.01 0.054 0.95 71.50%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMinT(0,-1,-2), MaxT(0) 0.609 1 0.008 1.06 73.60%
AvgMinT(0,-1,-2), MaxT(-1) 0.101 1.01 0.559 1.01 67.20%
AvgMinT(0,-1,-2), AvgMaxT(0,-1) 0.616 1 0.053 1.14 70.10%
AvgMinT(0,-1,-2), AvgMaxT(0,-1-2) 0.298 1.01 0.298 1.03 67.70%
AvgMinT(0,-1,-2), AvgMaxT(0,-1,-2,-3) 0.089 1.01 0.834 1.02 66.70%
AvgMinT(0,-1,-2), MinT(0) 0.331 1.01 0.375 1.09 68.70%
AvgMinT(0,-1,-2), MinT(-1) 0.16 1.01 0.728 1 66.70%
AvgMinT(0,-1,-2), AvgMinT(0,-1) 0.774 1 0.201 1.01 68.30%
AvgMinT(0,-1,-2), AvgMinT(0,-1,-2,-3) 0.055 1.02 0.241 0.98 68.10%
AvgMinT(0,-1,-2), AvgT(0) 0.579 1 0.004 1.02 73.60%
AvgMinT(0,-1,-2), AvgT(-1) 0.309 1.01 0.643 1.01 66.80%
AvgMinT(0,-1,-2), AvgAvgT(0,-1) 0.356 0.99 0.015 1.02 71.10%
AvgMinT(0,-1,-2), AvgAvgT(0,-1,-2) 0.923 1 0.294 1.02 67.50%
AvgMinT(0,-1,-2), AvgAvgT(0,-1,-2,-3) 0.184 1.01 0.936 1 66.50%
AvgMinT(0,-1,-2), DDMaxT(0) 0.609 1 0.008 1.06 73.60%
AvgMinT(0,-1,-2), DDMaxT(0,-1) 0.665 1 0.04 1.02 70.30%
AvgMinT(0,-1,-2), DDMaxT(0,-1,-2) 0.289 1.01 0.315 1.01 67.60%
AvgMinT(0,-1,-2), DDMaxT(0,-1,-2,-3) 0.092 1.01 0.819 1 66.80%
AvgMinT(0,-1,-2), DDAvgT(0) 0.579 1 0.004 1.02 73.60%
AvgMinT(0,-1,-2), DDAvgT(0,-1) 0.349 0.99 0.014 1.01 70.80%
AvgMinT(0,-1,-2), DDAvgT(0,-1,-2) 0.934 1 0.287 1 67.60%
AvgMinT(0,-1,-2), DDAvgT(0,-1,-2,-3) 0.18 1.01 0.926 1 66.60%
AvgMinT(0,-1,-2), Day 0.007 1.01 0.025 1.05 70.50%
AvgMinT(0,-1,-2), MaxT(-2) 0.008 1.01 0.414 0.96 66.60%
AvgMinT(0,-1,-2), MinT(-2) 0.014 1.02 0.206 0.98 68.40%
AvgMinT(0,-1,-2), AvgT(-2) 0.012 1.02 0.281 0.97 66.90%
AvgMinT(0,-1,-2), HS(0)-HS(-1) 0.002 1.01 0.004 0.86 70.40%
AvgMinT(0,-1,-2), HS(0)-HS(-2) 0.003 1.01 0.001 0.89 74.20%
AvgMinT(0,-1,-2), HS(0)-HS(-3) 0.014 1.01 0.029 0.94 70.50%
AvgMinT(0,-1,-2), Stl(0,-1) 0.002 1.01 0.004 0.86 70.40%
AvgMinT(0,-1,-2), Stl(0,-1,-2) 0.003 1.01 0.005 0.91 72.40%
AvgMinT(0,-1,-2), Stl(0,-1,-2,-3) 0.004 1.01 0.044 0.95 70.00%



226 

 
 
 
 
 
 
 
 
 
 
 
 

Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable    
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMinT(0,-1,-2,-3), MaxT(0) 0.84 1 0.003 1.07 73.30%
AvgMinT(0,-1,-2,-3), MaxT(-1) 0.265 1.01 0.279 1.06 66.00%
AvgMinT(0,-1,-2,-3), AvgMaxT(0,-1) 0.919 1 0.017 1.17 70.20%
AvgMinT(0,-1,-2,-3), AvgMaxT(0,-1-2) 0.66 1 0.113 1.04 66.70%
AvgMinT(0,-1,-2,-3), AvgMaxT(0,-1,-2,-3) 0.316 1.01 0.532 1.05 64.70%
AvgMinT(0,-1,-2,-3), MinT(0) 0.608 1 0.137 1.13 68.50%
AvgMinT(0,-1,-2,-3), MinT(-1) 0.595 1 0.415 1 65.20%
AvgMinT(0,-1,-2,-3), AvgMinT(0,-1) 0.527 1 0.04 1.01 68.80%
AvgMinT(0,-1,-2,-3), AvgMinT(0,-1,-2) 0.241 0.98 0.055 1.02 68.10%
AvgMinT(0,-1,-2,-3), AvgT(0) 0.443 1 0.001 1.02 73.70%
AvgMinT(0,-1,-2,-3), AvgT(-1) 0.709 1 0.204 1.01 65.30%
AvgMinT(0,-1,-2,-3), AvgAvgT(0,-1) 0.259 0.99 0.004 1.02 71.00%
AvgMinT(0,-1,-2,-3), AvgAvgT(0,-1,-2) 0.471 0.99 0.046 1.04 68.10%
AvgMinT(0,-1,-2,-3), AvgAvgT(0,-1,-2,-3) 0.86 1 0.462 1.02 65.20%
AvgMinT(0,-1,-2,-3), DDMaxT(0) 0.84 1 0.003 1.07 73.30%
AvgMinT(0,-1,-2,-3), DDMaxT(0,-1) 0.963 1 0.013 1.03 70.10%
AvgMinT(0,-1,-2,-3), DDMaxT(0,-1,-2) 0.649 1 0.122 1.02 66.90%
AvgMinT(0,-1,-2,-3), DDMaxT(0,-1,-2,-3) 0.323 1.01 0.518 1.01 64.90%
AvgMinT(0,-1,-2,-3), DDAvgT(0) 0.443 1 0.001 1.02 73.70%
AvgMinT(0,-1,-2,-3), DDAvgT(0,-1) 0.255 0.99 0.004 1.01 70.90%
AvgMinT(0,-1,-2,-3), DDAvgT(0,-1,-2) 0.464 0.99 0.044 1.01 68.00%
AvgMinT(0,-1,-2,-3), DDAvgT(0,-1,-2,-3) 0.845 1 0.472 1 65.20%
AvgMinT(0,-1,-2,-3), Day 0.022 1.01 0.024 1.05 68.60%
AvgMinT(0,-1,-2,-3), MaxT(-2) 0.03 1.01 0.529 0.97 64.20%
AvgMinT(0,-1,-2,-3), MinT(-2) 0.091 1.01 0.541 0.99 64.60%
AvgMinT(0,-1,-2,-3), AvgT(-2) 0.062 1.01 0.49 0.98 64.50%
AvgMinT(0,-1,-2,-3), HS(0)-HS(-1) 0.005 1.01 0.003 0.85 70.00%
AvgMinT(0,-1,-2,-3), HS(0)-HS(-2) 0.005 1.01 0.001 0.88 74.40%
AvgMinT(0,-1,-2,-3), HS(0)-HS(-3) 0.021 1.01 0.014 0.94 70.10%
AvgMinT(0,-1,-2,-3), Stl(0,-1) 0.005 1.01 0.003 0.85 70.00%
AvgMinT(0,-1,-2,-3), Stl(0,-1,-2) 0.006 1.01 0.003 0.9 72.40%
AvgMinT(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.011 1.01 0.031 0.95 70.10%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(0), MaxT(0) 0.228 1.01 0.719 1.02 73.80%
AvgT(0), AvgMaxT(0,-1) 0.036 1.01 0.981 1 73.30%
AvgT(0), AvgMaxT(0,-1-2) 0.005 1.01 0.67 0.99 73.00%
AvgT(0), AvgMaxT(0,-1,-2,-3) 0.001 1.02 0.368 0.94 73.10%
AvgT(0), MinT(0) 0.002 1.02 0.176 0.86 74.40%
AvgT(0), AvgMinT(0,-1) 0.009 1.02 0.57 1 73.80%
AvgT(0), AvgMinT(0,-1,-2) 0.004 1.02 0.579 1 73.60%
AvgT(0), AvgMinT(0,-1,-2,-3) 0.001 1.02 0.443 1 73.70%
AvgT(0), AvgAvgT(0,-1) 0.08 1.01 0.919 1 73.50%
AvgT(0), AvgAvgT(0,-1,-2) 0.008 1.02 0.99 0.96 73.40%
AvgT(0), AvgAvgT(0,-1,-2,-3) 0.002 1.02 0.99 0.96 73.50%
AvgT(0), DDMaxT(0) 0.228 1.01 0.719 1.02 73.80%
AvgT(0), DDMaxT(0,-1) 0.046 1.01 0.904 1 73.40%
AvgT(0), DDMaxT(0,-1,-2) 0.005 1.02 0.641 0.99 73.00%
AvgT(0), DDMaxT(0,-1,-2,-3) 0.001 1.02 0.377 0.99 73.20%
AvgT(0), DDAvgT(0) na na na na na
AvgT(0), DDAvgT(0,-1) 0.082 1.01 0.931 1 73.50%
AvgT(0), DDAvgT(0,-1,-2) 0.008 1.02 0.578 1 73.40%
AvgT(0), DDAvgT(0,-1,-2,-3) 0.002 1.02 0.365 1 73.40%
AvgT(0), Day 0.001 1.01 0.154 1.04 73.80%
AvgT(0), MaxT(-1) 0.002 1.01 0.877 0.99 73.40%
AvgT(0), MaxT(-2) 0 1.01 0.384 0.96 73.00%
AvgT(0), MinT(-1) 0.002 1.01 0.616 1 73.80%
AvgT(0), MinT(-2) 0 1.01 0.682 1 73.50%
AvgT(0), AvgT(-1) 0.004 1.01 0.79 1 73.30%
AvgT(0), AvgT(-2) 0 1.01 0.493 0.99 73.20%
AvgT(0), HS(0)-HS(-1) 0 1.01 0.037 0.89 75.00%
AvgT(0), HS(0)-HS(-2) 0 1.01 0.008 0.91 76.20%
AvgT(0), HS(0)-HS(-3) 0.001 1.01 0.127 0.96 74.40%
AvgT(0), Stl(0,-1) 0 1.01 0.037 0.89 75.00%
AvgT(0), Stl(0,-1,-2) 0 1.01 0.018 0.92 75.80%
AvgT(0), Stl(0,-1,-2,-3) 0 1.01 0.113 0.96 73.90%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(-1), MaxT(-1) 0.196 1.02 0.718 0.96 65.60%
AvgT(-1), AvgMaxT(0,-1) 0.432 0.99 0.029 1.26 71.50%
AvgT(-1), AvgMaxT(0,-1-2) 0.724 1.01 0.341 1.04 66.90%
AvgT(-1), AvgMaxT(0,-1,-2,-3) 0.149 1.02 0.985 1 65.40%
AvgT(-1), MinT(-1) 0.303 1.02 0.851 1 65.40%
AvgT(-1), AvgMinT(0,-1) 0.883 1 0.129 1.01 68.00%
AvgT(-1), AvgMinT(0,-1,-2) 0.643 1.01 0.309 1.01 66.80%
AvgT(-1), AvgMinT(0,-1,-2,-3) 0.204 1.01 0.709 1 65.30%
AvgT(-1), AvgAvgT(0,-1) 0.042 0.96 0.002 1.03 73.50%
AvgT(-1), AvgAvgT(0,-1,-2) 0.668 0.99 0.145 1.03 68.10%
AvgT(-1), AvgAvgT(0,-1,-2,-3) 0.31 1.01 0.762 1.01 65.50%
AvgT(-1), DDMaxT(0,-1) 0.351 0.99 0.019 1.04 71.60%
AvgT(-1), DDMaxT(0,-1,-2) 0.697 1.01 0.365 1.02 66.80%
AvgT(-1), DDMaxT(0,-1,-2,-3) 0.154 1.02 0.996 1 65.40%
AvgT(-1), DDAvgT(0,-1) 0.041 0.96 0.002 1.01 73.60%
AvgT(-1), DDAvgT(0,-1,-2) 0.656 0.99 0.141 1.01 68.20%
AvgT(-1), DDAvgT(0,-1,-2,-3) 0.305 1.01 0.772 1 65.50%
AvgT(-1), Day 0.013 1.02 0.053 1.05 67.30%
AvgT(-1), MaxT(0) 0.821 1 0.006 1.07 73.50%
AvgT(-1), MaxT(-2) 0.009 1.03 0.256 0.94 66.40%
AvgT(-1), MinT(0) 0.227 1.01 0.162 1.11 69.10%
AvgT(-1), MinT(-2) 0.038 1.02 0.767 1 65.80%
AvgT(-1), AvgT(0) 0.79 1 0.004 1.01 73.30%
AvgT(-1), AvgT(-2) 0.022 1.02 0.403 0.98 66.50%
AvgT(-1), DDMaxT(0) 0.821 1 0.006 1.07 73.50%
AvgT(-1), DDAvgT(0) 0.79 1 0.004 1.01 73.30%
AvgT(-1), HS(0)-HS(-1) 0.002 1.02 0.003 0.85 71.00%
AvgT(-1), HS(0)-HS(-2) 0.004 1.02 0.001 0.89 74.10%
AvgT(-1), HS(0)-HS(-3) 0.029 1.01 0.04 0.95 69.30%
AvgT(-1), Stl(0,-1) 0.002 1.02 0.003 0.85 71.00%
AvgT(-1), Stl(0,-1,-2) 0.004 1.02 0.004 0.91 72.60%
AvgT(-1), Stl(0,-1,-2,-3) 0.005 1.02 0.043 0.95 69.60%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(-2), MaxT(-2) 0.174 1.06 0.39 0.92 60.50%
AvgT(-2), MinT(-2) 0.974 1 0.47 1.01 60.00%
AvgT(-2), Day 0.146 1.02 0.031 1.05 64.10%
AvgT(-2), MaxT(0) 0.685 0.99 0.001 1.08 73.80%
AvgT(-2), MaxT(-1) 0.83 1 0.068 1.1 64.90%
AvgT(-2), AvgMaxT(0,-1) 0.383 0.98 0.003 1.22 71.40%
AvgT(-2), AvgMaxT(0,-1-2) 0.166 0.96 0.008 1.1 69.30%
AvgT(-2), AvgMaxT(0,-1,-2,-3) 0.483 0.98 0.084 1.18 64.30%
AvgT(-2), MinT(0) 0.676 1.01 0.023 1.16 69.50%
AvgT(-2), MinT(-1) 0.807 0.99 0.048 1.01 64.70%
AvgT(-2), AvgMinT(0,-1) 0.689 0.99 0.009 1.01 68.10%
AvgT(-2), AvgMinT(0,-1,-2) 0.281 0.97 0.012 1.02 66.90%
AvgT(-2), AvgMinT(0,-1,-2,-3) 0.49 0.98 0.062 1.01 64.50%
AvgT(-2), AvgT(0) 0.493 0.99 0 1.01 73.20%
AvgT(-2), AvgT(-1) 0.403 0.98 0.022 1.02 66.50%
AvgT(-2), AvgAvgT(0,-1) 0.181 0.97 0.001 1.02 71.10%
AvgT(-2), AvgAvgT(0,-1,-2) 0.03 0.92 0.002 1.06 71.10%
AvgT(-2), AvgAvgT(0,-1,-2,-3) 0.121 0.94 0.016 1.05 67.60%
AvgT(-2), DDMaxT(0) 0.685 0.99 0.001 1.08 73.80%
AvgT(-2), DDMaxT(0,-1) 0.344 0.98 0.002 1.04 71.40%
AvgT(-2), DDMaxT(0,-1,-2) 0.177 0.96 0.009 1.04 69.40%
AvgT(-2), DDMaxT(0,-1,-2,-3) 0.468 0.98 0.08 1.04 64.50%
AvgT(-2), DDAvgT(0) 0.493 0.99 0 1.01 73.20%
AvgT(-2), DDAvgT(0,-1) 0.178 0.97 0.001 1.01 71.10%
AvgT(-2), DDAvgT(0,-1,-2) 0.029 0.92 0.001 1.01 71.00%
AvgT(-2), DDAvgT(0,-1,-2,-3) 0.125 0.94 0.017 1.01 67.50%
AvgT(-2), HS(0)-HS(-1) 0.027 1.04 0.003 0.85 68.20%
AvgT(-2), HS(0)-HS(-2) 0.013 1.04 0 0.87 73.30%
AvgT(-2), HS(0)-HS(-3) 0.125 1.02 0.008 0.93 68.40%
AvgT(-2), Stl(0,-1) 0.027 1.04 0.003 0.85 68.20%
AvgT(-2), Stl(0,-1,-2) 0.026 1.04 0.002 0.9 71.30%
AvgT(-2), Stl(0,-1,-2,-3) 0.063 1.03 0.026 0.95 67.60%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgAvgT(0,-1), MaxT(0) 0.474 1 0.121 1.05 73.20%
AvgAvgT(0,-1), MaxT(-1) 0.004 1.02 0.179 0.9 71.90%
AvgAvgT(0,-1), AvgMaxT(0,-1) 0.212 1.01 0.991 1 70.40%
AvgAvgT(0,-1), AvgMaxT(0,-1-2) 0.016 1.02 0.316 0.96 70.50%
AvgAvgT(0,-1), AvgMaxT(0,-1,-2,-3) 0.002 1.02 0.151 0.88 70.40%
AvgAvgT(0,-1), MinT(0) 0.023 1.01 0.899 0.99 70.40%
AvgAvgT(0,-1), MinT(-1) 0.004 1.02 0.149 0.99 72.00%
AvgAvgT(0,-1), AvgMinT(0,-1) 0.052 1.02 0.596 1 70.80%
AvgAvgT(0,-1), AvgMinT(0,-1,-2) 0.015 1.02 0.356 0.99 71.10%
AvgAvgT(0,-1), AvgMinT(0,-1,-2,-3) 0.004 1.02 0.259 0.99 71.10%
AvgAvgT(0,-1), AvgT(0) 0.919 1 0.08 1.01 73.50%
AvgAvgT(0,-1), AvgT(-1) 0.002 1.03 0.042 0.96 73.50%
AvgAvgT(0,-1), AvgAvgT(0,-1,-2) 0.013 1.03 0.129 0.96 71.30%
AvgAvgT(0,-1), AvgAvgT(0,-1,-2,-3) 0.003 1.02 0.125 0.97 71.10%
AvgAvgT(0,-1), DDMaxT(0) 0.474 1 0.121 1.05 73.20%
AvgAvgT(0,-1), DDMaxT(0,-1) 0.29 1.01 0.848 1 70.70%
AvgAvgT(0,-1), DDMaxT(0,-1,-2) 0.014 1.02 0.29 0.98 70.50%
AvgAvgT(0,-1), DDMaxT(0,-1,-2,-3) 0.002 1.02 0.158 0.97 70.50%
AvgAvgT(0,-1), DDAvgT(0) 0.919 1 0.08 1.01 73.50%
AvgAvgT(0,-1), DDAvgT(0,-1) 0.049 0.31 0.047 1.43 71.30%
AvgAvgT(0,-1), DDAvgT(0,-1,-2) 0.014 1.03 0.133 0.99 71.10%
AvgAvgT(0,-1), DDAvgT(0,-1,-2,-3) 0.003 1.02 0.121 0.99 71.00%
AvgAvgT(0,-1), Day 0.002 1.01 0.069 1.04 71.50%
AvgAvgT(0,-1), MaxT(-2) 0 1.02 0.136 0.93 70.70%
AvgAvgT(0,-1), MinT(-2) 0.002 1.01 0.393 0.99 71.20%
AvgAvgT(0,-1), AvgT(-2) 0.001 1.02 0.181 0.97 71.10%
AvgAvgT(0,-1), HS(0)-HS(-1) 0 1.01 0.009 0.87 73.60%
AvgAvgT(0,-1), HS(0)-HS(-2) 0.001 1.01 0.003 0.9 75.20%
AvgAvgT(0,-1), HS(0)-HS(-3) 0.004 1.01 0.105 0.95 72.10%
AvgAvgT(0,-1), Stl(0,-1) 0 1.01 0.009 0.87 73.60%
AvgAvgT(0,-1), Stl(0,-1,-2) 0 1.01 0.01 0.92 74.20%
AvgAvgT(0,-1), Stl(0,-1,-2,-3) 0.001 1.01 0.069 0.96 72.60%



231 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable   
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgAvgT(0,-1,-2), MaxT(0) 0.929 1 0.017 1.07 73.40%
AvgAvgT(0,-1,-2), MaxT(-1) 0.058 1.03 0.664 0.97 67.90%
AvgAvgT(0,-1,-2), AvgMaxT(0,-1) 0.909 1 0.117 1.18 70.30%
AvgAvgT(0,-1,-2), AvgMaxT(0,-1-2) 0.296 1.03 0.91 0.99 67.50%
AvgAvgT(0,-1,-2), AvgMaxT(0,-1,-2,-3) 0.019 1.05 0.187 0.85 68.50%
AvgAvgT(0,-1,-2), MinT(0) 0.154 1.02 0.362 1.08 69.50%
AvgAvgT(0,-1,-2), MinT(-1) 0.083 1.03 0.804 1 68.00%
AvgAvgT(0,-1,-2), AvgMinT(0,-1) 0.5 1.01 0.34 1.01 68.50%
AvgAvgT(0,-1,-2), AvgMinT(0,-1,-2) 0.294 1.02 0.923 1 67.50%
AvgAvgT(0,-1,-2), AvgMinT(0,-1,-2,-3) 0.046 1.04 0.471 0.99 68.10%
AvgAvgT(0,-1,-2), AvgT(0) 0.571 0.99 0.008 1.02 73.40%
AvgAvgT(0,-1,-2), AvgT(-1) 0.145 1.03 0.668 0.99 68.10%
AvgAvgT(0,-1,-2), AvgAvgT(0,-1) 0.129 0.96 0.013 1.03 71.30%
AvgAvgT(0,-1,-2), AvgAvgT(0,-1,-2,-3) 0.022 1.08 0.109 0.95 69.50%
AvgAvgT(0,-1,-2), DDMaxT(0) 0.929 1 0.017 1.07 73.40%
AvgAvgT(0,-1,-2), DDMaxT(0,-1) 0.791 1 0.082 1.03 70.50%
AvgAvgT(0,-1,-2), DDMaxT(0,-1,-2) 0.27 1.03 0.857 1 67.60%
AvgAvgT(0,-1,-2), DDMaxT(0,-1,-2,-3) 0.02 1.05 0.197 0.96 68.30%
AvgAvgT(0,-1,-2), DDAvgT(0) 0.571 0.99 0.008 1.02 73.40%
AvgAvgT(0,-1,-2), DDAvgT(0,-1) 0.124 0.96 0.013 1.01 71.20%
AvgAvgT(0,-1,-2), DDAvgT(0,-1,-2) 0.074 0.05 0.072 1.8 69.00%
AvgAvgT(0,-1,-2), DDAvgT(0,-1,-2,-3) 1.08 1.01 0.104 0.99 69.30%
AvgAvgT(0,-1,-2), Day 0.008 1.02 0.042 1.05 69.50%
AvgAvgT(0,-1,-2), MaxT(-2) 0.001 1.05 0.036 0.87 69.40%
AvgAvgT(0,-1,-2), MinT(-2) 0.009 1.04 0.254 0.99 69.30%
AvgAvgT(0,-1,-2), AvgT(-2) 0.002 1.06 0.03 0.92 71.10%
AvgAvgT(0,-1,-2), HS(0)-HS(-1) 0.001 1.03 0.004 0.85 72.50%
AvgAvgT(0,-1,-2), HS(0)-HS(-2) 0.002 1.03 0.001 0.89 75.30%
AvgAvgT(0,-1,-2), HS(0)-HS(-3) 0.012 1.02 0.045 0.95 71.00%
AvgAvgT(0,-1,-2), Stl(0,-1) 0.001 1.03 0.004 0.85 72.50%
AvgAvgT(0,-1,-2), Stl(0,-1,-2) 0.002 1.03 0.004 0.91 73.50%
AvgAvgT(0,-1,-2), Stl(0,-1,-2,-3) 0.003 1.02 0.044 0.95 71.30%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgAvgT(0,-1,-2,-3), MaxT(0) 0.763 1 0.004 1.08 73.50%
AvgAvgT(0,-1,-2,-3), MaxT(-1) 0.315 1.01 0.527 1.04 65.50%
AvgAvgT(0,-1,-2,-3), AvgMaxT(0,-1) 0.566 0.99 0.02 1.22 71.20%
AvgAvgT(0,-1,-2,-3), AvgMaxT(0,-1-2) 0.848 1 0.179 1.06 66.90%
AvgAvgT(0,-1,-2,-3), AvgMaxT(0,-1,-2,-3) 0.264 1.03 0.702 0.94 65.00%
AvgAvgT(0,-1,-2,-3), MinT(0) 0.385 1.01 0.135 1.12 69.20%
AvgAvgT(0,-1,-2,-3), MinT(-1) 0.4 1.01 0.442 1 65.30%
AvgAvgT(0,-1,-2,-3), AvgMinT(0,-1) 0.987 1 0.07 1.01 67.80%
AvgAvgT(0,-1,-2,-3), AvgMinT(0,-1,-2) 0.936 1 0.184 1.01 66.50%
AvgAvgT(0,-1,-2,-3), AvgMinT(0,-1,-2,-3) 0.462 1.02 0.86 1 65.20%
AvgAvgT(0,-1,-2,-3), AvgT(0) 0.374 0.99 0.002 1.02 73.50%
AvgAvgT(0,-1,-2,-3), AvgT(-1) 0.762 1.01 0.31 1.01 65.50%
AvgAvgT(0,-1,-2,-3), AvgAvgT(0,-1) 0.125 0.97 0.003 1.02 71.10%
AvgAvgT(0,-1,-2,-3), AvgAvgT(0,-1,-2) 0.109 0.95 0.022 1.08 69.50%
AvgAvgT(0,-1,-2,-3), DDMaxT(0) 0.763 1 0.004 1.08 73.50%
AvgAvgT(0,-1,-2,-3), DDMaxT(0,-1) 0.498 0.99 0.014 1.04 71.20%
AvgAvgT(0,-1,-2,-3), DDMaxT(0,-1,-2) 0.878 1 0.195 1.03 66.70%
AvgAvgT(0,-1,-2,-3), DDMaxT(0,-1,-2,-3) 0.28 1.03 0.732 0.99 64.80%
AvgAvgT(0,-1,-2,-3), DDAvgT(0) 0.374 0.99 0.002 1.02 73.50%
AvgAvgT(0,-1,-2,-3), DDAvgT(0,-1) 0.122 0.97 0.003 1.01 71.10%
AvgAvgT(0,-1,-2,-3), DDAvgT(0,-1,-2) 0.105 0.95 0.02 1.01 69.50%
AvgAvgT(0,-1,-2,-3), DDAvgT(0,-1,-2,-3) 0.77 1.11 0.818 0.98 64.90%
AvgAvgT(0,-1,-2,-3), Day 0.027 1.02 0.037 1.05 68.50%
AvgAvgT(0,-1,-2,-3), MaxT(-2) 0.007 1.05 0.089 0.88 66.90%
AvgAvgT(0,-1,-2,-3), MinT(-2) 0.073 1.03 0.64 0.99 65.40%
AvgAvgT(0,-1,-2,-3), AvgT(-2) 0.016 1.05 0.121 0.94 67.60%
AvgAvgT(0,-1,-2,-3), HS(0)-HS(-1) 0.003 1.03 0.002 0.85 71.50%
AvgAvgT(0,-1,-2,-3), HS(0)-HS(-2) 0.003 1.03 0 0.88 75.30%
AvgAvgT(0,-1,-2,-3), HS(0)-HS(-3) 0.022 1.02 0.019 0.94 70.10%
AvgAvgT(0,-1,-2,-3), Stl(0,-1) 0.003 1.03 0.002 0.85 71.50%
AvgAvgT(0,-1,-2,-3), Stl(0,-1,-2) 0.004 1.03 0.002 0.9 73.50%
AvgAvgT(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.008 1.02 0.029 0.95 70.50%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable   
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDMaxT(0), MaxT(0) na na na na na
DDMaxT(0), AvgMaxT(0,-1) 0.068 1.07 0.986 1 72.60%
DDMaxT(0), AvgMaxT(0,-1-2) 0.01 1.08 0.672 0.99 74.10%
DDMaxT(0), AvgMaxT(0,-1,-2,-3) 0.002 1.09 0.367 0.94 74.00%
DDMaxT(0), MinT(0) 0.007 1.06 0.573 1.04 73.70%
DDMaxT(0), AvgMinT(0,-1) 0.015 1.06 0.443 1 73.60%
DDMaxT(0), AvgMinT(0,-1,-2) 0.008 1.06 0.609 1 73.60%
DDMaxT(0), AvgMinT(0,-1,-2,-3) 0.003 1.07 0.84 1 73.30%
DDMaxT(0), AvgT(0) 0.719 1.02 0.228 1.01 73.80%
DDMaxT(0), AvgAvgT(0,-1) 0.121 1.05 0.474 1 73.20%
DDMaxT(0), AvgAvgT(0,-1,-2) 0.017 1.07 0.929 1 73.40%
DDMaxT(0), AvgAvgT(0,-1,-2,-3) 0.004 1.08 0.763 1 73.50%
DDMaxT(0), DDMaxT(0,-1) 0.088 1.07 0.891 1 73.60%
DDMaxT(0), DDMaxT(0,-1,-2) 0.01 1.08 0.642 0.99 74.00%
DDMaxT(0), DDMaxT(0,-1,-2,-3) 0.002 1.09 0.378 0.98 73.90%
DDMaxT(0), DDAvgT(0) 0.719 1.02 0.228 1.01 73.80%
DDMaxT(0), DDAvgT(0,-1) 0.124 1.05 0.467 1 73.20%
DDMaxT(0), DDAvgT(0,-1,-2) 0.017 1.07 0.922 1 73.20%
DDMaxT(0), DDAvgT(0,-1,-2,-3) 0.004 1.08 0.75 1 73.60%
DDMaxT(0), Day 0.002 1.06 0.19 1.03 74.20%
DDMaxT(0), MaxT(-1) 0.003 1.07 0.987 1 72.60%
DDMaxT(0), MaxT(-2) 0 1.08 0.401 0.96 73.90%
DDMaxT(0), MinT(-1) 0.004 1.07 0.781 1 73.50%
DDMaxT(0), MinT(-2) 0.001 1.07 0.948 1 73.20%
DDMaxT(0), AvgT(-1) 0.006 1.07 0.821 1 73.50%
DDMaxT(0), AvgT(-2) 0.001 1.08 0.685 0.99 73.80%
DDMaxT(0), HS(0)-HS(-1) 0.001 1.06 0.033 0.89 75.10%
DDMaxT(0), HS(0)-HS(-2) 0.001 1.07 0.005 0.9 77.30%
DDMaxT(0), HS(0)-HS(-3) 0.002 1.06 0.12 0.96 74.20%
DDMaxT(0), Stl(0,-1) 0.001 1.06 0.033 0.89 75.10%
DDMaxT(0), Stl(0,-1,-2) 0 1.07 0.015 0.92 76.40%
DDMaxT(0), Stl(0,-1,-2,-3) 0 1.07 0.102 0.96 74.60%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDMaxT(0,-1), MaxT(0) 0.891 1 0.088 1.07 73.60%
DDMaxT(0,-1), MaxT(-1) 0.002 1.06 0.057 0.83 73.50%
DDMaxT(0,-1), AvgMaxT(0,-1) 0.055 1.27 0.085 0.29 70.20%
DDMaxT(0,-1), AvgMaxT(0,-1-2) 0.016 1.07 0.145 0.92 71.60%
DDMaxT(0,-1), AvgMaxT(0,-1,-2,-3) 0.003 1.05 0.108 0.85 71.90%
DDMaxT(0,-1), MinT(0) 0.028 1.02 0.394 1.06 71.50%
DDMaxT(0,-1), MinT(-1) 0.017 1.03 0.978 1 70.10%
DDMaxT(0,-1), AvgMinT(0,-1) 0.075 1.02 0.39 1 70.80%
DDMaxT(0,-1), AvgMinT(0,-1,-2) 0.04 1.02 0.665 1 70.30%
DDMaxT(0,-1), AvgMinT(0,-1,-2,-3) 0.013 1.03 0.963 1 70.10%
DDMaxT(0,-1), AvgT(0) 0.904 1 0.046 1.01 73.40%
DDMaxT(0,-1), AvgT(-1) 0.019 1.04 0.351 0.99 71.60%
DDMaxT(0,-1), AvgAvgT(0,-1) 0.848 1 0.29 1.01 70.70%
DDMaxT(0,-1), AvgAvgT(0,-1,-2) 0.082 1.03 0.791 1 70.50%
DDMaxT(0,-1), AvgAvgT(0,-1,-2,-3) 0.014 1.04 0.498 0.99 71.20%
DDMaxT(0,-1), DDMaxT(0) 0.891 1 0.088 1.07 73.60%
DDMaxT(0,-1), DDMaxT(0,-1,-2) 0.013 1.07 0.125 0.96 71.40%
DDMaxT(0,-1), DDMaxT(0,-1,-2,-3) 0.004 1.05 0.114 0.96 71.90%
DDMaxT(0,-1), DDAvgT(0) 0.904 1 0.046 1.01 73.40%
DDMaxT(0,-1), DDAvgT(0,-1) 0.861 1 0.282 1 70.50%
DDMaxT(0,-1), DDAvgT(0,-1,-2) 0.084 1.03 0.802 1 70.50%
DDMaxT(0,-1), DDAvgT(0,-1,-2,-3) 0.014 1.04 0.486 1 71.00%
DDMaxT(0,-1), Day 0.004 1.02 0.087 1.04 71.10%
DDMaxT(0,-1), MaxT(-2) 0.001 1.04 0.142 0.93 71.40%
DDMaxT(0,-1), MinT(-2) 0.004 1.03 0.811 1 70.70%
DDMaxT(0,-1), AvgT(-2) 0.002 1.04 0.344 0.98 71.40%
DDMaxT(0,-1), HS(0)-HS(-1) 0.001 1.03 0.007 0.86 73.90%
DDMaxT(0,-1), HS(0)-HS(-2) 0.001 1.03 0.003 0.9 75.90%
DDMaxT(0,-1), HS(0)-HS(-3) 0.006 1.02 0.098 0.95 71.90%
DDMaxT(0,-1), Stl(0,-1) 0.001 1.03 0.007 0.86 73.90%
DDMaxT(0,-1), Stl(0,-1,-2) 0.001 1.03 0.01 0.92 74.60%
DDMaxT(0,-1), Stl(0,-1,-2,-3) 0.001 1.03 0.072 0.96 72.80%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDMaxT(0,-1,-2), MaxT(0) 0.642 0.99 0.01 1.08 74.00%
DDMaxT(0,-1,-2), MaxT(-1) 0.115 1.03 0.694 0.97 66.80%
DDMaxT(0,-1,-2), AvgMaxT(0,-1) 0.195 0.97 0.025 1.41 71.80%
DDMaxT(0,-1,-2), AvgMaxT(0,-1-2) 0.22 0.62 0.2 3.04 67.40%
DDMaxT(0,-1,-2), AvgMaxT(0,-1,-2,-3) 0.02 1.08 0.091 0.73 69.80%
DDMaxT(0,-1,-2), MinT(0) 0.139 1.01 0.151 1.11 70.30%
DDMaxT(0,-1,-2), MinT(-1) 0.138 1.02 0.497 1 67.20%
DDMaxT(0,-1,-2), AvgMinT(0,-1) 0.375 1.01 0.118 1.01 69.40%
DDMaxT(0,-1,-2), AvgMinT(0,-1,-2) 0.315 1.01 0.289 1.01 67.60%
DDMaxT(0,-1,-2), AvgMinT(0,-1,-2,-3) 0.122 1.02 0.649 1 66.90%
DDMaxT(0,-1,-2), AvgT(0) 0.641 0.99 0.005 1.02 73.00%
DDMaxT(0,-1,-2), AvgT(-1) 0.365 1.02 0.697 1.01 66.80%
DDMaxT(0,-1,-2), AvgAvgT(0,-1) 0.29 0.98 0.014 1.02 70.50%
DDMaxT(0,-1,-2), AvgAvgT(0,-1,-2) 0.857 1 0.27 1.03 67.60%
DDMaxT(0,-1,-2), AvgAvgT(0,-1,-2,-3) 0.195 1.03 0.878 1 66.70%
DDMaxT(0,-1,-2), DDMaxT(0) 0.642 0.99 0.01 1.08 74.00%
DDMaxT(0,-1,-2), DDMaxT(0,-1) 0.125 0.96 0.013 1.07 71.40%
DDMaxT(0,-1,-2), DDMaxT(0,-1,-2,-3) 0.023 1.08 0.101 0.93 69.70%
DDMaxT(0,-1,-2), DDAvgT(0) 0.641 0.99 0.005 1.02 73.00%
DDMaxT(0,-1,-2), DDAvgT(0,-1) 0.285 0.98 0.014 1.01 70.40%
DDMaxT(0,-1,-2), DDAvgT(0,-1,-2) 0.844 0.99 0.263 1.01 67.60%
DDMaxT(0,-1,-2), DDAvgT(0,-1,-2,-3) 0.191 1.03 0.863 1 66.70%
DDMaxT(0,-1,-2), Day 0.015 1.02 0.05 1.05 69.40%
DDMaxT(0,-1,-2), MaxT(-2) 0.001 1.06 0.018 0.83 71.50%
DDMaxT(0,-1,-2), MinT(-2) 0.031 1.02 0.907 1 66.80%
DDMaxT(0,-1,-2), AvgT(-2) 0.009 1.04 0.177 0.96 69.40%
DDMaxT(0,-1,-2), HS(0)-HS(-1) 0.002 1.03 0.004 0.85 73.30%
DDMaxT(0,-1,-2), HS(0)-HS(-2) 0.003 1.03 0.001 0.89 75.90%
DDMaxT(0,-1,-2), HS(0)-HS(-3) 0.022 1.02 0.046 0.95 70.20%
DDMaxT(0,-1,-2), Stl(0,-1) 0.002 1.03 0.004 0.85 73.30%
DDMaxT(0,-1,-2), Stl(0,-1,-2) 0.003 1.02 0.005 0.91 73.70%
DDMaxT(0,-1,-2), Stl(0,-1,-2,-3) 0.005 1.02 0.047 0.95 71.10%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDMaxT(0,-1,-2,-3), MaxT(0) 0.378 0.98 0.002 1.09 73.90%
DDMaxT(0,-1,-2,-3), MaxT(-1) 0.62 1.01 0.385 1.06 64.80%
DDMaxT(0,-1,-2,-3), AvgMaxT(0,-1) 0.148 0.97 0.006 1.33 72.00%
DDMaxT(0,-1,-2,-3), AvgMaxT(0,-1-2) 0.09 0.93 0.019 1.18 69.70%
DDMaxT(0,-1,-2,-3), AvgMaxT(0,-1,-2,-3) 0.08 14.83 0.083 0 65.80%
DDMaxT(0,-1,-2,-3), MinT(0) 0.348 1.01 0.069 1.13 69.90%
DDMaxT(0,-1,-2,-3), MinT(-1) 0.43 1.01 0.203 1 65.30%
DDMaxT(0,-1,-2,-3), AvgMinT(0,-1) 0.776 1 0.035 1.01 68.10%
DDMaxT(0,-1,-2,-3), AvgMinT(0,-1,-2) 0.819 1 0.092 1.01 66.80%
DDMaxT(0,-1,-2,-3), AvgMinT(0,-1,-2,-3) 0.518 1.01 0.323 1.01 64.90%
DDMaxT(0,-1,-2,-3), AvgT(0) 0.377 0.99 0.001 1.02 73.20%
DDMaxT(0,-1,-2,-3), AvgT(-1) 0.996 1 0.154 1.02 65.40%
DDMaxT(0,-1,-2,-3), AvgAvgT(0,-1) 0.158 0.97 0.002 1.02 70.50%
DDMaxT(0,-1,-2,-3), AvgAvgT(0,-1,-2) 0.197 0.96 0.02 1.05 68.30%
DDMaxT(0,-1,-2,-3), AvgAvgT(0,-1,-2,-3) 0.732 0.99 0.28 1.03 64.80%
DDMaxT(0,-1,-2,-3), DDMaxT(0) 0.378 0.98 0.002 1.09 73.90%
DDMaxT(0,-1,-2,-3), DDMaxT(0,-1) 0.114 0.96 0.004 1.05 71.90%
DDMaxT(0,-1,-2,-3), DDMaxT(0,-1,-2) 0.101 0.93 0.023 1.08 69.70%
DDMaxT(0,-1,-2,-3), DDAvgT(0) 0.377 0.99 0.001 1.02 73.20%
DDMaxT(0,-1,-2,-3), DDAvgT(0,-1) 0.155 0.97 0.002 1.01 70.40%
DDMaxT(0,-1,-2,-3), DDAvgT(0,-1,-2) 0.193 0.96 0.02 1.01 68.40%
DDMaxT(0,-1,-2,-3), DDAvgT(0,-1,-2,-3) 0.738 0.99 0.288 1.01 64.90%
DDMaxT(0,-1,-2,-3), Day 0.054 1.02 0.043 1.05 67.30%
DDMaxT(0,-1,-2,-3), MaxT(-2) 0.008 1.07 0.061 0.85 67.50%
DDMaxT(0,-1,-2,-3), MinT(-2) 0.155 1.02 0.747 1 63.40%
DDMaxT(0,-1,-2,-3), AvgT(-2) 0.08 1.04 0.468 0.98 64.50%
DDMaxT(0,-1,-2,-3), HS(0)-HS(-1) 0.006 1.03 0.003 0.85 71.40%
DDMaxT(0,-1,-2,-3), HS(0)-HS(-2) 0.006 1.03 0 0.88 75.10%
DDMaxT(0,-1,-2,-3), HS(0)-HS(-3) 0.042 1.02 0.02 0.94 69.20%
DDMaxT(0,-1,-2,-3), Stl(0,-1) 0.006 1.03 0.003 0.85 71.40%
DDMaxT(0,-1,-2,-3), Stl(0,-1,-2) 0.008 1.03 0.003 0.9 73.20%
DDMaxT(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.015 1.03 0.031 0.95 70.20%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDAvgT(0), MaxT(0) 0.228 1.01 0.719 1.02 73.80%
DDAvgT(0), AvgMaxT(0,-1) 0.036 1.01 0.981 1 73.30%
DDAvgT(0), AvgMaxT(0,-1-2) 0.005 1.01 0.67 0.99 73.00%
DDAvgT(0), AvgMaxT(0,-1,-2,-3) 0.001 1.02 0.368 0.94 73.10%
DDAvgT(0), MinT(0) 0.002 1.02 0.176 0.86 74.40%
DDAvgT(0), AvgMinT(0,-1) 0.009 1.02 0.57 1 73.80%
DDAvgT(0), AvgMinT(0,-1,-2) 0.004 1.02 0.579 1 73.60%
DDAvgT(0), AvgMinT(0,-1,-2,-3) 0.001 1.02 0.443 1 73.70%
DDAvgT(0), AvgT(0) na na na na na
DDAvgT(0), AvgAvgT(0,-1) 0.08 1.01 0.919 1 73.50%
DDAvgT(0), AvgAvgT(0,-1,-2) 0.008 1.02 0.571 0.99 73.40%
DDAvgT(0), AvgAvgT(0,-1,-2,-3) 0.002 1.02 0.374 0.99 73.50%
DDAvgT(0), DDMaxT(0) 0.228 1.01 0.719 1.02 73.80%
DDAvgT(0), DDMaxT(0,-1) 0.046 1.01 0.904 1 73.40%
DDAvgT(0), DDMaxT(0,-1,-2) 0.005 1.02 0.641 0.99 73.00%
DDAvgT(0), DDMaxT(0,-1,-2,-3) 0.001 1.02 0.377 0.99 73.20%
DDAvgT(0), DDAvgT(0,-1) 0.082 1.01 0.931 1 73.50%
DDAvgT(0), DDAvgT(0,-1,-2) 0.008 1.02 0.578 1 73.40%
DDAvgT(0), DDAvgT(0,-1,-2,-3) 0.002 1.02 0.365 1 73.40%
DDAvgT(0), Day 0.001 1.01 0.154 1.04 73.80%
DDAvgT(0), MaxT(-1) 0.002 1.01 0.877 0.99 73.40%
DDAvgT(0), MaxT(-2) 0 1.01 0.384 0.96 73.00%
DDAvgT(0), MinT(-1) 0.002 1.01 0.616 1 73.80%
DDAvgT(0), MinT(-2) 0 1.01 0.682 1 73.50%
DDAvgT(0), AvgT(-1) 0.004 1.01 0.79 1 73.30%
DDAvgT(0), AvgT(-2) 0 1.01 0.493 0.99 73.20%
DDAvgT(0), HS(0)-HS(-1) 0 1.01 0.037 0.89 75.00%
DDAvgT(0), HS(0)-HS(-2) 0 1.01 0.008 0.91 76.20%
DDAvgT(0), HS(0)-HS(-3) 0.001 1.01 0.127 0.96 74.40%
DDAvgT(0), Stl(0,-1) 0 1.01 0.037 0.89 75.00%
DDAvgT(0), Stl(0,-1,-2) 0 1.01 0.018 0.92 75.80%
DDAvgT(0), Stl(0,-1,-2,-3) 0 1.01 0.113 0.96 73.90%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDAvgT(0,-1), MaxT(0) 0.467 1 0.124 1.05 73.20%
DDAvgT(0,-1), MaxT(-1) 0.003 1.01 0.177 0.9 71.80%
DDAvgT(0,-1), AvgMaxT(0,-1) 0.206 1 0.98 1 70.40%
DDAvgT(0,-1), AvgMaxT(0,-1-2) 0.015 1.01 0.31 0.96 70.30%
DDAvgT(0,-1), AvgMaxT(0,-1,-2,-3) 0.002 1.01 0.149 0.88 70.40%
DDAvgT(0,-1), MinT(0) 0.023 1 0.894 0.99 70.30%
DDAvgT(0,-1), MinT(-1) 0.004 1.01 0.146 0.99 72.00%
DDAvgT(0,-1), AvgMinT(0,-1) 0.05 1 0.586 1 70.60%
DDAvgT(0,-1), AvgMinT(0,-1,-2) 0.014 1.01 0.349 0.99 70.80%
DDAvgT(0,-1), AvgMinT(0,-1,-2,-3) 0.004 1.01 0.255 0.99 70.90%
DDAvgT(0,-1), AvgT(0) 0.931 1 0.082 1.01 73.50%
DDAvgT(0,-1), AvgT(-1) 0.002 1.01 0.041 0.96 73.60%
DDAvgT(0,-1), AvgAvgT(0,-1) 0.047 1.43 0.049 0.31 71.30%
DDAvgT(0,-1), AvgAvgT(0,-1,-2) 0.013 1.01 0.124 0.96 71.20%
DDAvgT(0,-1), AvgAvgT(0,-1,-2,-3) 0.003 1.01 0.122 0.97 71.10%
DDAvgT(0,-1), DDMaxT(0) 0.467 1 0.124 1.05 73.20%
DDAvgT(0,-1), DDMaxT(0,-1) 0.282 1 0.861 1 70.50%
DDAvgT(0,-1), DDMaxT(0,-1,-2) 0.014 1.01 0.285 0.98 70.40%
DDAvgT(0,-1), DDMaxT(0,-1,-2,-3) 0.002 1.01 0.155 0.97 70.40%
DDAvgT(0,-1), DDAvgT(0) 0.931 1 0.082 1.01 73.50%
DDAvgT(0,-1), DDAvgT(0,-1,-2) 0.013 1.01 0.128 0.99 71.10%
DDAvgT(0,-1), DDAvgT(0,-1,-2,-3) 0.003 1.01 0.119 0.99 71.10%
DDAvgT(0,-1), Day 0.002 1 0.069 1.04 71.50%
DDAvgT(0,-1), MaxT(-2) 0 1.01 0.134 0.93 70.70%
DDAvgT(0,-1), MinT(-2) 0.002 1 0.389 0.99 71.20%
DDAvgT(0,-1), AvgT(-2) 0.001 1.01 0.178 0.97 71.10%
DDAvgT(0,-1), HS(0)-HS(-1) 0 1 0.009 0.87 73.70%
DDAvgT(0,-1), HS(0)-HS(-2) 0.001 1 0.003 0.9 75.20%
DDAvgT(0,-1), HS(0)-HS(-3) 0.003 1 0.105 0.95 72.20%
DDAvgT(0,-1), Stl(0,-1) 0 1 0.009 0.87 73.70%
DDAvgT(0,-1), Stl(0,-1,-2) 0 1 0.01 0.92 74.20%
DDAvgT(0,-1), Stl(0,-1,-2,-3) 0.001 1 0.069 0.96 72.70%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDAvgT(0,-1,-2), MaxT(0) 0.922 1 0.017 1.07 73.20%
DDAvgT(0,-1,-2), MaxT(-1) 0.057 1.01 0.658 0.97 68.10%
DDAvgT(0,-1,-2), AvgMaxT(0,-1) 0.92 1 0.119 1.18 70.30%
DDAvgT(0,-1,-2), AvgMaxT(0,-1-2) 0.288 1.01 0.897 0.99 67.60%
DDAvgT(0,-1,-2), AvgMaxT(0,-1,-2,-3) 0.018 1.01 0.183 0.85 68.50%
DDAvgT(0,-1,-2), MinT(0) 0.151 1 0.364 1.08 69.40%
DDAvgT(0,-1,-2), MinT(-1) 0.081 1.01 0.796 1 68.00%
DDAvgT(0,-1,-2), AvgMinT(0,-1) 0.493 1 0.345 1.01 68.50%
DDAvgT(0,-1,-2), AvgMinT(0,-1,-2) 0.287 1 0.934 1 67.60%
DDAvgT(0,-1,-2), AvgMinT(0,-1,-2,-3) 0.044 1.01 0.464 0.99 68.00%
DDAvgT(0,-1,-2), AvgT(0) 0.578 1 0.008 1.02 73.40%
DDAvgT(0,-1,-2), AvgT(-1) 0.141 1.01 0.656 0.99 68.20%
DDAvgT(0,-1,-2), AvgAvgT(0,-1) 0.133 0.99 0.014 1.03 71.10%
DDAvgT(0,-1,-2), AvgAvgT(0,-1,-2) 0.072 1.8 0.074 0.05 69.00%
DDAvgT(0,-1,-2), AvgAvgT(0,-1,-2,-3) 0.02 1.01 0.105 0.95 69.50%
DDAvgT(0,-1,-2), DDMaxT(0) 0.922 1 0.017 1.07 73.20%
DDAvgT(0,-1,-2), DDMaxT(0,-1) 0.802 1 0.084 1.03 70.50%
DDAvgT(0,-1,-2), DDMaxT(0,-1,-2) 0.263 1.01 0.844 0.99 67.60%
DDAvgT(0,-1,-2), DDMaxT(0,-1,-2,-3) 0.02 1.01 0.193 0.96 68.40%
DDAvgT(0,-1,-2), DDAvgT(0) 0.578 1 0.008 1.02 73.40%
DDAvgT(0,-1,-2), DDAvgT(0,-1) 0.128 0.99 0.013 1.01 71.10%
DDAvgT(0,-1,-2), DDAvgT(0,-1,-2,-3) 0.02 1.01 0.1 0.99 69.30%
DDAvgT(0,-1,-2), Day 0.008 1 0.042 1.05 69.50%
DDAvgT(0,-1,-2), MaxT(-2) 0.001 1.01 0.036 0.86 69.30%
DDAvgT(0,-1,-2), MinT(-2) 0.009 1.01 0.251 0.99 69.50%
DDAvgT(0,-1,-2), AvgT(-2) 0.001 1.01 0.029 0.92 71.00%
DDAvgT(0,-1,-2), HS(0)-HS(-1) 0.001 1.01 0.004 0.85 72.40%
DDAvgT(0,-1,-2), HS(0)-HS(-2) 0.002 1.01 0.001 0.89 75.30%
DDAvgT(0,-1,-2), HS(0)-HS(-3) 0.012 1 0.046 0.95 71.00%
DDAvgT(0,-1,-2), Stl(0,-1) 0.001 1.01 0.004 0.85 72.40%
DDAvgT(0,-1,-2), Stl(0,-1,-2) 0.002 1.01 0.004 0.91 73.60%
DDAvgT(0,-1,-2), Stl(0,-1,-2,-3) 0.003 1 0.044 0.95 71.30%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDAvgT(0,-1,-2,-3), MaxT(0) 0.75 1 0.004 1.08 73.60%
DDAvgT(0,-1,-2,-3), MaxT(-1) 0.321 1 0.523 1.04 65.40%
DDAvgT(0,-1,-2,-3), AvgMaxT(0,-1) 0.551 1 0.02 1.22 71.20%
DDAvgT(0,-1,-2,-3), AvgMaxT(0,-1-2) 0.834 1 0.174 1.06 66.90%
DDAvgT(0,-1,-2,-3), AvgMaxT(0,-1,-2,-3) 0.271 1.01 0.707 0.94 65.10%
DDAvgT(0,-1,-2,-3), MinT(0) 0.392 1 0.134 1.12 69.30%
DDAvgT(0,-1,-2,-3), MinT(-1) 0.406 1 0.437 1 65.20%
DDAvgT(0,-1,-2,-3), AvgMinT(0,-1) 0.995 1 0.069 1.01 67.80%
DDAvgT(0,-1,-2,-3), AvgMinT(0,-1,-2) 0.926 1 0.18 1.01 66.60%
DDAvgT(0,-1,-2,-3), AvgMinT(0,-1,-2,-3) 0.472 1 0.845 1 65.20%
DDAvgT(0,-1,-2,-3), AvgT(0) 0.365 1 0.002 1.02 73.40%
DDAvgT(0,-1,-2,-3), AvgT(-1) 0.772 1 0.305 1.01 65.50%
DDAvgT(0,-1,-2,-3), AvgAvgT(0,-1) 0.121 0.99 0.003 1.02 71.00%
DDAvgT(0,-1,-2,-3), AvgAvgT(0,-1,-2) 0.104 0.99 0.021 1.08 69.30%
DDAvgT(0,-1,-2,-3), AvgAvgT(0,-1,-2,-3) 0.818 0.98 0.77 1.11 64.90%
DDAvgT(0,-1,-2,-3), DDMaxT(0) 0.75 1 0.004 1.08 73.60%
DDAvgT(0,-1,-2,-3), DDMaxT(0,-1) 0.486 1 0.014 1.04 71.00%
DDAvgT(0,-1,-2,-3), DDMaxT(0,-1,-2) 0.863 1 0.191 1.03 66.70%
DDAvgT(0,-1,-2,-3), DDMaxT(0,-1,-2,-3) 0.288 1.01 0.738 0.99 64.90%
DDAvgT(0,-1,-2,-3), DDAvgT(0) 0.365 1 0.002 1.02 73.40%
DDAvgT(0,-1,-2,-3), DDAvgT(0,-1) 0.119 0.99 0.003 1.01 71.10%
DDAvgT(0,-1,-2,-3), DDAvgT(0,-1,-2) 0.1 0.99 0.02 1 69.30%
DDAvgT(0,-1,-2,-3), Day 0.028 1.01 0.037 1.05 68.30%
DDAvgT(0,-1,-2,-3), MaxT(-2) 0.007 1.01 0.091 0.88 66.80%
DDAvgT(0,-1,-2,-3), MinT(-2) 0.075 1.01 0.647 0.99 65.30%
DDAvgT(0,-1,-2,-3), AvgT(-2) 0.017 1.01 0.125 0.94 67.50%
DDAvgT(0,-1,-2,-3), HS(0)-HS(-1) 0.003 1.01 0.002 0.85 71.20%
DDAvgT(0,-1,-2,-3), HS(0)-HS(-2) 0.003 1.01 0 0.88 75.20%
DDAvgT(0,-1,-2,-3), HS(0)-HS(-3) 0.023 1.01 0.019 0.94 70.30%
DDAvgT(0,-1,-2,-3), Stl(0,-1) 0.003 1.01 0.002 0.85 71.20%
DDAvgT(0,-1,-2,-3), Stl(0,-1,-2) 0.004 1.01 0.002 0.9 73.60%
DDAvgT(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.009 1.01 0.029 0.95 70.70%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HS(0)-HS(-1), HS(0)-HS(-2) 0.774 0.98 0.037 0.91 71.40%
HS(0)-HS(-1), HS(0)-HS(-3) 0.204 0.93 0.098 0.95 69.20%
HS(0)-HS(-1), Stl(0,-1) na na na na na
HS(0)-HS(-1), Stl(0,-1,-2) 0.299 0.94 0.121 0.94 67.50%
HS(0)-HS(-1), Stl(0,-1,-2,-3) 0.08 0.9 0.34 0.97 66.30%
HS(0)-HS(-1), Day 0.018 0.89 0.039 1.05 67.30%
HS(0)-HS(-1), MaxT(0) 0.033 0.89 0.001 1.06 75.10%
HS(0)-HS(-1), MaxT(-1) 0.002 0.85 0.004 1.12 70.30%
HS(0)-HS(-1), MaxT(-2) 0.003 0.86 0.061 1.07 67.80%
HS(0)-HS(-1), AvgMaxT(0,-1) 0.007 0.86 0.001 1.17 73.90%
HS(0)-HS(-1), AvgMaxT(0,-1-2) 0.004 0.85 0.002 1.06 73.00%
HS(0)-HS(-1), AvgMaxT(0,-1,-2,-3) 0.003 0.85 0.006 1.14 71.60%
HS(0)-HS(-1), MinT(0) 0.013 0.88 0.008 1.16 70.90%
HS(0)-HS(-1), MinT(-1) 0.005 0.86 0.005 1.01 69.40%
HS(0)-HS(-1), MinT(-2) 0.003 0.86 0.025 1.01 66.10%
HS(0)-HS(-1), AvgMinT(0,-1) 0.008 0.87 0.002 1.01 71.60%
HS(0)-HS(-1), AvgMinT(0,-1,-2) 0.004 0.86 0.002 1.01 70.40%
HS(0)-HS(-1), AvgMinT(0,-1,-2,-3) 0.003 0.85 0.005 1.01 70.00%
HS(0)-HS(-1), AvgT(0) 0.037 0.89 0 1.01 75.00%
HS(0)-HS(-1), AvgT(-1) 0.003 0.85 0.002 1.02 71.00%
HS(0)-HS(-1), AvgT(-2) 0.003 0.85 0.027 1.04 68.20%
HS(0)-HS(-1), AvgAvgT(0,-1) 0.009 0.87 0 1.01 73.60%
HS(0)-HS(-1), AvgAvgT(0,-1,-2) 0.004 0.85 0.001 1.03 72.50%
HS(0)-HS(-1), AvgAvgT(0,-1,-2,-3) 0.002 0.85 0.003 1.03 71.50%
HS(0)-HS(-1), DDMaxT(0) 0.033 0.89 0.001 1.06 75.10%
HS(0)-HS(-1), DDMaxT(0,-1) 0.007 0.86 0.001 1.03 73.90%
HS(0)-HS(-1), DDMaxT(0,-1,-2) 0.004 0.85 0.002 1.03 73.30%
HS(0)-HS(-1), DDMaxT(0,-1,-2,-3) 0.003 0.85 0.006 1.03 71.40%
HS(0)-HS(-1), DDAvgT(0) 0.037 0.89 0 1.01 75.00%
HS(0)-HS(-1), DDAvgT(0,-1) 0.009 0.87 0 1 73.70%
HS(0)-HS(-1), DDAvgT(0,-1,-2) 0.004 0.85 0.001 1.01 72.40%
HS(0)-HS(-1), DDAvgT(0,-1,-2,-3) 0.002 0.85 0.003 1.01 71.20%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HS(0)-HS(-2), HS(0)-HS(-1) 0.037 0.91 0.774 0.98 71.40%
HS(0)-HS(-2), HS(0)-HS(-3) 0.066 0.92 0.482 0.98 72.80%
HS(0)-HS(-2), Stl(0,-1) 0.037 0.91 0.774 0.98 71.40%
HS(0)-HS(-2), Stl(0,-1,-2) na na na na na
HS(0)-HS(-2), Stl(0,-1,-2,-3) 0.025 0.88 0.749 1.01 72.80%
HS(0)-HS(-2), Day 0.002 0.9 0.035 1.05 72.60%
HS(0)-HS(-2), MaxT(0) 0.005 0.9 0.001 1.07 77.30%
HS(0)-HS(-2), MaxT(-1) 0.001 0.89 0.01 1.1 74.70%
HS(0)-HS(-2), MaxT(-2) 0 0.88 0.031 1.08 73.70%
HS(0)-HS(-2), AvgMaxT(0,-1) 0.003 0.9 0.002 1.16 76.20%
HS(0)-HS(-2), AvgMaxT(0,-1-2) 0.001 0.89 0.002 1.06 75.80%
HS(0)-HS(-2), AvgMaxT(0,-1,-2,-3) 0 0.88 0.006 1.14 75.00%
HS(0)-HS(-2), MinT(0) 0.004 0.9 0.013 1.16 75.00%
HS(0)-HS(-2), MinT(-1) 0.001 0.89 0.007 1.01 73.50%
HS(0)-HS(-2), MinT(-2) 0 0.88 0.016 1.02 72.50%
HS(0)-HS(-2), AvgMinT(0,-1) 0.003 0.9 0.003 1.01 74.20%
HS(0)-HS(-2), AvgMinT(0,-1,-2) 0.001 0.89 0.003 1.01 74.20%
HS(0)-HS(-2), AvgMinT(0,-1,-2,-3) 0.001 0.88 0.005 1.01 74.40%
HS(0)-HS(-2), AvgT(0) 0.008 0.91 0 1.01 76.20%
HS(0)-HS(-2), AvgT(-1) 0.001 0.89 0.004 1.02 74.10%
HS(0)-HS(-2), AvgT(-2) 0 0.87 0.013 1.04 73.30%
HS(0)-HS(-2), AvgAvgT(0,-1) 0.003 0.9 0.001 1.01 75.20%
HS(0)-HS(-2), AvgAvgT(0,-1,-2) 0.001 0.89 0.002 1.03 75.30%
HS(0)-HS(-2), AvgAvgT(0,-1,-2,-3) 0 0.88 0.003 1.03 75.30%
HS(0)-HS(-2), DDMaxT(0) 0.005 0.9 0.001 1.07 77.30%
HS(0)-HS(-2), DDMaxT(0,-1) 0.003 0.9 0.001 1.03 75.90%
HS(0)-HS(-2), DDMaxT(0,-1,-2) 0.001 0.89 0.003 1.03 75.90%
HS(0)-HS(-2), DDMaxT(0,-1,-2,-3) 0 0.88 0.006 1.03 75.10%
HS(0)-HS(-2), DDAvgT(0) 0.008 0.91 0 1.01 76.20%
HS(0)-HS(-2), DDAvgT(0,-1) 0.003 0.9 0.001 1 75.20%
HS(0)-HS(-2), DDAvgT(0,-1,-2) 0.001 0.89 0.002 1.01 75.30%
HS(0)-HS(-2), DDAvgT(0,-1,-2,-3) 0 0.88 0.003 1.01 75.20%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HS(0)-HS(-3), HS(0)-HS(-1) 0.098 0.95 0.204 0.93 69.20%
HS(0)-HS(-3), HS(0)-HS(-2) 0.482 0.98 0.066 0.92 72.80%
HS(0)-HS(-3), Stl(0,-1) 0.098 0.95 0.204 0.93 69.20%
HS(0)-HS(-3), Stl(0,-1,-2) 0.172 0.96 0.172 0.95 70.90%
HS(0)-HS(-3), Stl(0,-1,-2,-3) 0.086 0.94 0.795 0.99 66.70%
HS(0)-HS(-3), Day 0.01 0.94 0.033 1.05 69.50%
HS(0)-HS(-3), MaxT(0) 0.12 0.96 0.002 1.06 74.20%
HS(0)-HS(-3), MaxT(-1) 0.031 0.94 0.054 1.08 68.60%
HS(0)-HS(-3), MaxT(-2) 0.008 0.93 0.255 1.04 68.60%
HS(0)-HS(-3), AvgMaxT(0,-1) 0.09 0.95 0.008 1.14 72.00%
HS(0)-HS(-3), AvgMaxT(0,-1-2) 0.047 0.95 0.021 1.04 70.30%
HS(0)-HS(-3), AvgMaxT(0,-1,-2,-3) 0.02 0.94 0.043 1.1 69.30%
HS(0)-HS(-3), MinT(0) 0.031 0.94 0.02 1.15 72.30%
HS(0)-HS(-3), MinT(-1) 0.031 0.94 0.038 1.01 69.30%
HS(0)-HS(-3), MinT(-2) 0.007 0.93 0.083 1.01 68.30%
HS(0)-HS(-3), AvgMinT(0,-1) 0.051 0.95 0.01 1.01 71.60%
HS(0)-HS(-3), AvgMinT(0,-1,-2) 0.029 0.94 0.014 1.01 70.50%
HS(0)-HS(-3), AvgMinT(0,-1,-2,-3) 0.014 0.94 0.021 1.01 70.10%
HS(0)-HS(-3), AvgT(0) 0.127 0.96 0.001 1.01 74.40%
HS(0)-HS(-3), AvgT(-1) 0.04 0.95 0.029 1.01 69.30%
HS(0)-HS(-3), AvgT(-2) 0.008 0.93 0.125 1.02 68.40%
HS(0)-HS(-3), AvgAvgT(0,-1) 0.105 0.95 0.004 1.01 72.10%
HS(0)-HS(-3), AvgAvgT(0,-1,-2) 0.045 0.95 0.012 1.02 71.00%
HS(0)-HS(-3), AvgAvgT(0,-1,-2,-3) 0.019 0.94 0.022 1.02 70.10%
HS(0)-HS(-3), DDMaxT(0) 0.12 0.96 0.002 1.06 74.20%
HS(0)-HS(-3), DDMaxT(0,-1) 0.098 0.95 0.006 1.02 71.90%
HS(0)-HS(-3), DDMaxT(0,-1,-2) 0.046 0.95 0.022 1.02 70.20%
HS(0)-HS(-3), DDMaxT(0,-1,-2,-3) 0.02 0.94 0.042 1.02 69.20%
HS(0)-HS(-3), DDAvgT(0) 0.127 0.96 0.001 1.01 74.40%
HS(0)-HS(-3), DDAvgT(0,-1) 0.105 0.95 0.003 1 72.20%
HS(0)-HS(-3), DDAvgT(0,-1,-2) 0.046 0.95 0.012 1 71.00%
HS(0)-HS(-3), DDAvgT(0,-1,-2,-3) 0.019 0.94 0.023 1.01 70.30%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Stl(0,-1), HS(0)-HS(-1) na na na na na
Stl(0,-1), HS(0)-HS(-2) 0.774 0.98 0.037 0.91 71.40%
Stl(0,-1), HS(0)-HS(-3) 0.204 0.93 0.098 0.95 69.20%
Stl(0,-1), Stl(0,-1,-2) 0.299 0.94 0.121 0.94 67.50%
Stl(0,-1), Stl(0,-1,-2,-3) 0.08 0.9 0.34 0.97 66.30%
Stl(0,-1), Day 0.018 0.89 0.039 1.05 67.30%
Stl(0,-1), MaxT(0) 0.033 0.89 0.001 1.06 75.10%
Stl(0,-1), MaxT(-1) 0.002 0.85 0.004 1.12 70.30%
Stl(0,-1), MaxT(-2) 0.003 0.86 0.061 1.07 67.80%
Stl(0,-1), AvgMaxT(0,-1) 0.007 0.86 0.001 1.17 73.90%
Stl(0,-1), AvgMaxT(0,-1-2) 0.004 0.85 0.002 1.06 73.00%
Stl(0,-1), AvgMaxT(0,-1,-2,-3) 0.003 0.85 0.006 1.14 71.60%
Stl(0,-1), MinT(0) 0.013 0.88 0.008 1.16 70.90%
Stl(0,-1), MinT(-1) 0.005 0.86 0.005 1.01 69.40%
Stl(0,-1), MinT(-2) 0.003 0.86 0.025 1.01 66.10%
Stl(0,-1), AvgMinT(0,-1) 0.008 0.87 0.002 1.01 71.60%
Stl(0,-1), AvgMinT(0,-1,-2) 0.004 0.86 0.002 1.01 70.40%
Stl(0,-1), AvgMinT(0,-1,-2,-3) 0.003 0.85 0.005 1.01 70.00%
Stl(0,-1), AvgT(0) 0.037 0.89 0 1.01 75.00%
Stl(0,-1), AvgT(-1) 0.003 0.85 0.002 1.02 71.00%
Stl(0,-1), AvgT(-2) 0.003 0.85 0.027 1.04 68.20%
Stl(0,-1), AvgAvgT(0,-1) 0.009 0.87 0 1.01 73.60%
Stl(0,-1), AvgAvgT(0,-1,-2) 0.004 0.85 0.001 1.03 72.50%
Stl(0,-1), AvgAvgT(0,-1,-2,-3) 0.002 0.85 0.003 1.03 71.50%
Stl(0,-1), DDMaxT(0) 0.033 0.89 0.001 1.06 75.10%
Stl(0,-1), DDMaxT(0,-1) 0.007 0.86 0.001 1.03 73.90%
Stl(0,-1), DDMaxT(0,-1,-2) 0.004 0.85 0.002 1.03 73.30%
Stl(0,-1), DDMaxT(0,-1,-2,-3) 0.003 0.85 0.006 1.03 71.40%
Stl(0,-1), DDAvgT(0) 0.037 0.89 0 1.01 75.00%
Stl(0,-1), DDAvgT(0,-1) 0.009 0.87 0 1 73.70%
Stl(0,-1), DDAvgT(0,-1,-2) 0.004 0.85 0.001 1.01 72.40%
Stl(0,-1), DDAvgT(0,-1,-2,-3) 0.002 0.85 0.003 1.01 71.20%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Stl(0,-1,-2), HS(0)-HS(-1) 0.121 0.94 0.299 0.94 67.50%
Stl(0,-1,-2), HS(0)-HS(-2) na na na na na
Stl(0,-1,-2), HS(0)-HS(-3) 0.172 0.95 0.172 0.96 70.90%
Stl(0,-1,-2), Stl(0,-1) 0.121 0.94 0.299 0.94 67.50%
Stl(0,-1,-2), Stl(0,-1,-2,-3) 0.078 0.91 0.871 1.01 70.70%
Stl(0,-1,-2), Day 0.004 0.91 0.018 1.06 70.90%
Stl(0,-1,-2), MaxT(0) 0.015 0.92 0 1.07 76.40%
Stl(0,-1,-2), MaxT(-1) 0.004 0.91 0.01 1.1 72.70%
Stl(0,-1,-2), MaxT(-2) 0.002 0.9 0.054 1.07 71.70%
Stl(0,-1,-2), AvgMaxT(0,-1) 0.01 0.92 0.001 1.17 74.60%
Stl(0,-1,-2), AvgMaxT(0,-1-2) 0.005 0.91 0.003 1.06 73.60%
Stl(0,-1,-2), AvgMaxT(0,-1,-2,-3) 0.003 0.9 0.008 1.14 73.10%
Stl(0,-1,-2), MinT(0) 0.01 0.92 0.008 1.17 73.80%
Stl(0,-1,-2), MinT(-1) 0.004 0.91 0.006 1.01 71.50%
Stl(0,-1,-2), MinT(-2) 0.002 0.91 0.03 1.01 70.70%
Stl(0,-1,-2), AvgMinT(0,-1) 0.008 0.92 0.002 1.01 72.80%
Stl(0,-1,-2), AvgMinT(0,-1,-2) 0.005 0.91 0.003 1.01 72.40%
Stl(0,-1,-2), AvgMinT(0,-1,-2,-3) 0.003 0.9 0.006 1.01 72.40%
Stl(0,-1,-2), AvgT(0) 0.018 0.92 0 1.01 75.80%
Stl(0,-1,-2), AvgT(-1) 0.004 0.91 0.004 1.02 72.60%
Stl(0,-1,-2), AvgT(-2) 0.002 0.9 0.026 1.04 71.30%
Stl(0,-1,-2), AvgAvgT(0,-1) 0.01 0.92 0 1.01 74.20%
Stl(0,-1,-2), AvgAvgT(0,-1,-2) 0.004 0.91 0.002 1.03 73.50%
Stl(0,-1,-2), AvgAvgT(0,-1,-2,-3) 0.002 0.9 0.004 1.03 73.50%
Stl(0,-1,-2), DDMaxT(0) 0.015 0.92 0 1.07 76.40%
Stl(0,-1,-2), DDMaxT(0,-1) 0.01 0.92 0.001 1.03 74.60%
Stl(0,-1,-2), DDMaxT(0,-1,-2) 0.005 0.91 0.003 1.02 73.70%
Stl(0,-1,-2), DDMaxT(0,-1,-2,-3) 0.003 0.9 0.008 1.03 73.20%
Stl(0,-1,-2), DDAvgT(0) 0.018 0.92 0 1.01 75.80%
Stl(0,-1,-2), DDAvgT(0,-1) 0.01 0.92 0 1 74.20%
Stl(0,-1,-2), DDAvgT(0,-1,-2) 0.004 0.91 0.002 1.01 73.60%
Stl(0,-1,-2), DDAvgT(0,-1,-2,-3) 0.002 0.9 0.004 1.01 73.60%
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Old Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Stl(0,-1,-2,-3), HS(0)-HS(-1) 0.34 0.97 0.08 0.9 66.30%
Stl(0,-1,-2,-3), HS(0)-HS(-2) 0.749 1.01 0.025 0.88 72.80%
Stl(0,-1,-2,-3), HS(0)-HS(-3) 0.795 0.99 0.086 0.94 66.70%
Stl(0,-1,-2,-3), Stl(0,-1) 0.34 0.97 0.08 0.9 66.30%
Stl(0,-1,-2,-3), Stl(0,-1,-2) 0.871 1.01 0.078 0.91 70.70%
Stl(0,-1,-2,-3), Day 0.034 0.95 0.02 1.05 67.80%
Stl(0,-1,-2,-3), MaxT(0) 0.102 0.96 0 1.07 74.60%
Stl(0,-1,-2,-3), MaxT(-1) 0.044 0.95 0.013 1.1 69.10%
Stl(0,-1,-2,-3), MaxT(-2) 0.026 0.95 0.124 1.05 67.70%
Stl(0,-1,-2,-3), AvgMaxT(0,-1) 0.068 0.96 0.001 1.17 72.90%
Stl(0,-1,-2,-3), AvgMaxT(0,-1-2) 0.048 0.95 0.004 1.05 70.80%
Stl(0,-1,-2,-3), AvgMaxT(0,-1,-2,-3) 0.031 0.95 0.015 1.12 70.20%
Stl(0,-1,-2,-3), MinT(0) 0.058 0.96 0.008 1.17 71.90%
Stl(0,-1,-2,-3), MinT(-1) 0.043 0.95 0.008 1.01 69.00%
Stl(0,-1,-2,-3), MinT(-2) 0.032 0.95 0.059 1.01 67.20%
Stl(0,-1,-2,-3), AvgMinT(0,-1) 0.054 0.95 0.002 1.01 71.50%
Stl(0,-1,-2,-3), AvgMinT(0,-1,-2) 0.044 0.95 0.004 1.01 70.00%
Stl(0,-1,-2,-3), AvgMinT(0,-1,-2,-3) 0.031 0.95 0.011 1.01 70.10%
Stl(0,-1,-2,-3), AvgT(0) 0.113 0.96 0 1.01 73.90%
Stl(0,-1,-2,-3), AvgT(-1) 0.043 0.95 0.005 1.02 69.60%
Stl(0,-1,-2,-3), AvgT(-2) 0.026 0.95 0.063 1.03 67.60%
Stl(0,-1,-2,-3), AvgAvgT(0,-1) 0.069 0.96 0.001 1.01 72.60%
Stl(0,-1,-2,-3), AvgAvgT(0,-1,-2) 0.044 0.95 0.003 1.02 71.30%
Stl(0,-1,-2,-3), AvgAvgT(0,-1,-2,-3) 0.029 0.95 0.008 1.02 70.50%
Stl(0,-1,-2,-3), DDMaxT(0) 0.102 0.96 0 1.07 74.60%
Stl(0,-1,-2,-3), DDMaxT(0,-1) 0.96 0.91 0.001 1.03 72.80%
Stl(0,-1,-2,-3), DDMaxT(0,-1,-2) 0.047 0.95 0.005 1.02 71.10%
Stl(0,-1,-2,-3), DDMaxT(0,-1,-2,-3) 0.031 0.95 0.015 1.03 70.20%
Stl(0,-1,-2,-3), DDAvgT(0) 0.113 0.96 0 1.01 73.90%
Stl(0,-1,-2,-3), DDAvgT(0,-1) 0.069 0.96 0.001 1 72.70%
Stl(0,-1,-2,-3), DDAvgT(0,-1,-2) 0.044 0.95 0.003 1 71.30%
Stl(0,-1,-2,-3), DDAvgT(0,-1,-2,-3) 0.029 0.91 0.009 1 70.70%
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“NEW SNOW BINOMIAL LOGISTIC REGRESSION RESULTS” 
 

The following charts provide the new snow binomial logistic regression results.  Each 
significant new snow variable was entered into the binomial logistic regression equation 
individually and in groups of two and the resulting p-values, odds ratios and percent 
concordant pairs are tabulated in the charts. 
 
 

 
 
 
 
 

New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

Variable    
P-Value

Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(0) 0.03 1.11 60.70%

AvgMinT(0,-1) 0.115 1.01 56.30%

AvgT(0) 0.059 1.01 60.40%

DDAvgT(0) 0.059 1.01 60.40%

MaxT(0)-MaxT(-2) 0.154 1.05 54.70%

MinT(0)-MinT(-1) 0.187 1.06 54.00%

MinT(0)-MinT(-2) 0.114 1.06 56.40%

MinT(0)-MinT(-3) 0.059 1.04 56.70%

AvgT(0)-AvgT(-1) 0.133 1.08 55.40%

AvgT(0)-AvgT(-2) 0.095 1.06 56.90%

AvgT(0)-AvgT(-3) 0.134 1.05 55.20%

MaxT(-1)-MinT(0) 0.049 0.78 56.40%

HN(0,-1,-2) 0.118 1.01 59.70%

HN(0,-1,-2,-3) 0.063 1.01 60.60%

Stl(0,-1) 0.199 0.96 54.60%

Stl(0,-1,-2) 0.191 0.97 54.20%

Stl(0,-1-2,-3) 0.052 0.97 55.40%

HNW(0,-1) 0.022 1.35 60.50%

HNW(0,-1,-2) 0.01 1.33 67.80%

HNW(0,-1,-2,-3) 0.002 1.34 68.30%

HND(0,-1) 0.01 1.01 63.20%

HND(0,-1,-2,-3) 0.024 1.01 62.60%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(0), AvgMinT(0,-1) 0.064 1.18 0.406 0.99 62.20%
MinT(0), AvgT(0) 0.223 1.13 0.816 1 61.30%
MinT(0), DDAvgT(0) 0.223 1.13 0.816 1 61.30%
MinT(0), MinT(0)-MinT(-2) 0.095 1.09 0.644 1.02 61.80%
MinT(0), MinT(0)-MinT(-3) 0.144 1.08 0.456 1.02 62.00%
MinT(0), AvgT(0)-AvgT(-3) 0.087 1.09 0.661 1.02 62.30%
MinT(0), EMaxT(0)-MaxT(-2) 0.059 1.09 0.417 1.03 63.10%
MinT(0), MinT(0)-MinT(-1) 0.063 1.1 0.657 1.02 61.90%
MinT(0), AvgT(0)-AvgT(-1) 0.066 1.09 0.417 1.04 62.60%
MinT(0), AvgT(0)-AvgT(-2) 0.094 1.09 0.458 1.03 63.00%
MinT(0), MaxT(-1)-MinT(0) 0.103 1.08 0.233 0.85 61.60%
MinT(0), HN(0,-1,-2) 0.009 1.14 0.022 1.02 67.00%
MinT(0), HN(0,-1,-2,-3) 0.007 1.14 0.009 1.02 68.80%
MinT(0), Stl(0,-1) 0.022 1.11 0.141 0.95 66.50%
MinT(0), Stl(0,-1,-2) 0.021 1.11 0.14 0.97 66.60%
MinT(0), Stl(0,-1-2,-3) 0.021 1.12 0.039 0.97 65.80%
MinT(0), HNW(0,-1) 0.023 1.11 0.016 1.38 67.30%
MinT(0), HNW(0,-1,-2) 0.016 1.13 0.004 1.39 70.40%
MinT(0), HNW(0,-1,-2,-3) 0.013 1.13 0.001 1.4 72.10%
MinT(0), HND(0,-1) 0.141 1.07 0.067 1.01 67.30%
MinT(0), HND(0,-1,-2,-3) 0.097 1.08 0.121 1.01 66.30%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st 
Variable   
P-Value

1st Variable 
Odds Ratio

2nd 
Variable    
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgMinT(0,-1), MinT(0) 0.406 0.99 0.064 1.18 62.20%
AvgMinT(0,-1), AvgT(0) 0.964 1 0.262 1.01 60.10%
AvgMinT(0,-1), DDAvgT(0) 0.964 1 0.262 1.01 60.10%
AvgMinT(0,-1), EMaxT(0)-MaxT(-2) 0.159 1.01 0.218 1.04 60.80%
AvgMinT(0,-1), MinT(0)-MinT(-1) 0.088 1.01 0.14 1.07 61.70%
AvgMinT(0,-1), MinT(0)-MinT(-2) 0.204 1.01 0.206 1.05 61.70%
AvgMinT(0,-1), MinT(0)-MinT(-3) 0.356 1 0.167 1.03 60.10%
AvgMinT(0,-1), AvgT(0)-AvgT(-1) 0.084 1.01 0.097 1.09 62.10%
AvgMinT(0,-1), AvgT(0)-AvgT(-2) 0.199 1.01 0.162 1.06 61.50%
AvgMinT(0,-1), AvgT(0)-AvgT(-3) 0.262 1 0.311 1.04 59.20%
AvgMinT(0,-1), MaxT(-1)-MinT(0) 0.143 1.01 0.061 0.78 60.80%
AvgMinT(0,-1), HN(0,-1,-2) 0.041 1.01 0.037 1.02 62.80%
AvgMinT(0,-1), HN(0,-1,-2,-3) 0.027 1.01 0.013 1.02 64.10%
AvgMinT(0,-1), Stl(0,-1) 0.077 1.01 0.128 0.95 62.20%
AvgMinT(0,-1), Stl(0,-1,-2) 0.067 1.01 0.125 0.97 62.00%
AvgMinT(0,-1), Stl(0,-1-2,-3) 0.063 1.01 0.034 0.97 61.20%
AvgMinT(0,-1), HNW(0,-1) 0.133 1.01 0.027 1.34 63.50%
AvgMinT(0,-1), HNW(0,-1,-2) 0.081 1.01 0.007 1.36 67.50%
AvgMinT(0,-1), HNW(0,-1,-2,-3) 0.058 1.01 0.001 1.38 68.80%
AvgMinT(0,-1), HND(0,-1) 0.515 1 0.039 1.01 65.40%
AvgMinT(0,-1), HND(0,-1,-2,-3) 0.383 1 0.086 1.01 64.40%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(0), MinT(0) 0.816 1 0.223 1.13 61.30%
AvgT(0), AvgMinT(0,-1) 0.262 1.01 0.964 1 60.10%
AvgT(0), DDAvgT(0) na na na na
AvgT(0), MinT(0)-MinT(-3) 0.246 1.01 0.262 1.02 61.00%
AvgT(0), AvgT(0)-AvgT(-2) 0.212 1.01 0.384 1.04 60.90%
AvgT(0), AvgT(0)-AvgT(-3) 0.195 1.01 0.559 1.02 61.20%
AvgT(0), EMaxT(0)-MaxT(-2) 0.16 1.01 0.51 1.02 60.10%
AvgT(0), MinT(0)-MinT(-1) 0.106 1.01 0.419 1.04 61.90%
AvgT(0), MinT(0)-MinT(-2) 0.175 1.01 0.395 1.03 61.50%
AvgT(0), AvgT(0)-AvgT(-1) 0.136 1.01 0.367 1.05 61.00%
AvgT(0), MaxT(-1)-MinT(0) 0.096 1.01 0.087 0.8 62.40%
AvgT(0), HN(0,-1,-2) 0.011 1.02 0.015 1.02 67.30%
AvgT(0), HN(0,-1,-2,-3) 0.008 1.02 0.007 1.02 68.60%
AvgT(0), Stl(0,-1) 0.038 1.01 0.132 0.95 67.30%
AvgT(0), Stl(0,-1,-2) 0.035 1.01 0.132 0.97 65.70%
AvgT(0), Stl(0,-1-2,-3) 0.036 1.01 0.037 0.97 64.40%
AvgT(0), HNW(0,-1) 0.019 1.02 0.011 1.41 67.90%
AvgT(0), HNW(0,-1,-2) 0.01 1.02 0.002 1.43 71.60%
AvgT(0), HNW(0,-1,-2,-3) 0.006 1.02 0 1.45 73.00%
AvgT(0), HND(0,-1) 0.194 1.01 0.071 1.01 67.30%
AvgT(0), HND(0,-1,-2,-3) 0.126 1.01 0.126 1.01 66.60%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

DDAvgT(0), MinT(0) 0.816 1 0.223 1.13 61.30%
DDAvgT(0), AvgMinT(0,-1) 0.262 1.01 0.964 1 60.10%
DDAvgT(0), AvgT(0) na na na na
DDAvgT(0), MinT(0)-MinT(-3) 0.246 1.01 0.262 1.02 61.00%
DDAvgT(0), AvgT(0)-AvgT(-2) 0.212 1.01 0.384 1.04 60.90%
DDAvgT(0), AvgT(0)-AvgT(-3) 0.195 1.01 0.559 1.02 61.20%
DDAvgT(0), MaxT(0)-MaxT(-2) 0.16 1.01 0.51 1.02 60.10%
DDAvgT(0), MinT(0)-MinT(-1) 0.106 1.01 0.419 1.04 61.90%
DDAvgT(0) ,MinT(0)-MinT(-2) 0.175 1.01 0.395 1.03 61.50%
DDAvgT(0), AvgT(0)-AvgT(-1) 0.136 1.01 0.367 1.05 61.00%
DDAvgT(0), MaxT(-1)-MinT(0) 0.096 1.01 0.087 0.8 62.40%
DDAvgT(0), HN(0,-1,-2) 0.011 1.02 0.015 1.02 67.30%
DDAvgT(0), HN(0,-1,-2,-3) 0.008 1.02 0.007 1.02 68.60%
DDAvgT(0), Stl(0,-1) 0.038 1.01 0.132 0.95 67.30%
DDAvgT(0), Stl(0,-1,-2) 0.035 1.01 0.132 0.97 65.70%
DDAvgT(0), Stl(0,-1,-2,-3) 0.036 1.01 0.037 0.97 64.40%
DDAvgT(0), HNW(0,-1) 0.019 1.02 0.011 1.41 67.90%
DDAvgT(0), HNW(0,-1,-2) 0.01 1.02 0.002 1.43 71.60%
DDAvgT(0), HNW(0,-1,-2,-3) 0.006 1.02 0 1.45 73.00%
DDAvgT(0), HND(0,-1) 0.194 1.01 0.071 1.01 67.30%
DDAvgT(0), HND(0,-1,-2,-3) 0.126 1.01 0.126 1.01 66.60%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MaxT(0)-MaxT(-2), MinT(0)-MinT(-2) 0.575 1.02 0.392 1.04 57.80%
MaxT(0)-MaxT(-2), MinT(0)-MinT(-3) 0.595 1.02 0.183 1.03 58.00%
MaxT(0)-MaxT(-2), AvgT(0)-AvgT(-1) 0.463 1.03 0.413 1.05 56.70%
MaxT(0)-MaxT(-2), AvgT(0)-AvgT(-2) 0.835 0.98 0.377 1.08 57.50%
MaxT(0)-MaxT(-2), AvgT(0)-AvgT(-3) 0.574 1.03 0.477 1.03 55.80%
MaxT(0)-MaxT(-2), MinT(0) 0.417 1.03 0.059 1.09 63.10%
MaxT(0)-MaxT(-2), AvgMinT(0,-1) 0.218 1.04 0.159 1.01 60.80%
MaxT(0)-MaxT(-2), AvgT(0) 0.51 1.02 0.16 1.01 60.10%
MaxT(0)-MaxT(-2), DDAvgT(0) 0.51 1.02 0.16 1.01 60.10%
MaxT(0)-MaxT(-2), MinT(0)-MinT(-1) 0.276 1.04 0.366 1.04 57.60%
MaxT(0)-MaxT(-2), MaxT(-1)-MinT(0) 0.406 1.03 0.12 0.81 58.40%
MaxT(0)-MaxT(-2), HN(0,-1,-2) 0.091 1.06 0.061 1.02 60.00%
MaxT(0)-MaxT(-2), HN(0,-1,-2,-3) 0.146 1.05 0.059 1.01 60.70%
MaxT(0)-MaxT(-2), Stl(0,-1) 0.161 1.05 0.188 0.96 59.30%
MaxT(0)-MaxT(-2), Stl(0,-1,-2) 0.19 1.04 0.247 0.97 57.50%
MaxT(0)-MaxT(-2), Stl(0,-1,-2,-3) 0.251 1.04 0.084 0.97 57.30%
MaxT(0)-MaxT(-2), HNW(0,-1) 0.046 1.07 0.006 1.45 68.30%
MaxT(0)-MaxT(-2), HNW(0,-1,-2) 0.042 1.07 0.003 1.41 69.50%
MaxT(0)-MaxT(-2), HNW(0,-1,-2,-3) 0.087 1.06 0.002 1.36 69.40%
MaxT(0)-MaxT(-2), HND(0,-1) 0.115 1.06 0.008 1.01 66.70%
MaxT(0)-MaxT(-2), HND(0,-1,-2,-3) 0.105 1.06 0.017 1.01 67.20%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(0)-MinT(-1), MinT(0)-MinT(-2) 0.687 1.02 0.325 1.04 56.80%
MinT(0)-MinT(-1), AvgT(0)-AvgT(-1) 0.957 1 0.457 1.07 56.40%
MinT(0)-MinT(-1), AvgT(0)-AvgT(-2) 0.608 1.03 0.239 1.05 57.10%
MinT(0)-MinT(-1), MaxT(-1)-MinT(0) 0.995 1 0.151 0.78 56.60%
MinT(0)-MinT(-1), MinT(0) 0.657 1.02 0.063 1.1 61.90%
MinT(0)-MinT(-1), AvgMinT(0,-1) 0.14 1.07 0.088 1.01 61.70%
MinT(0)-MinT(-1), AvgT(0) 0.419 1.04 0.106 1.01 61.90%
MinT(0)-MinT(-1), DDAvgT(0) 0.419 1.04 0.106 1.01 61.90%
MinT(0)-MinT(-1), MaxT(0)-MaxT(-2) 0.366 1.04 0.276 1.04 57.60%
MinT(0)-MinT(-1), MinT(0)-MinT(-3) 0.509 1.03 0.125 1.03 58.40%
MinT(0)-MinT(-1), AvgT(0)-AvgT(-3) 0.388 1.04 0.243 1.04 56.50%
MinT(0)-MinT(-1), HN(0,-1,-2) 0.172 1.06 0.109 1.01 59.80%
MinT(0)-MinT(-1), HN(0,-1,-2,-3) 0.196 1.06 0.07 1.01 61.60%
MinT(0)-MinT(-1), Stl(0,-1) 0.213 1.06 0.268 0.97 59.60%
MinT(0)-MinT(-1), Stl(0,-1,-2) 0.238 1.05 0.272 0.98 59.20%
MinT(0)-MinT(-1), Stl(0,-1,-2,-3) 0.267 1.05 0.077 0.97 59.20%
MinT(0)-MinT(-1), HNW(0,-1) 0.081 1.08 0.009 1.42 64.40%
MinT(0)-MinT(-1), HNW(0,-1,-2) 0.118 1.07 0.006 1.36 67.70%
MinT(0)-MinT(-1), HNW(0,-1,-2,-3) 0.156 1.07 0.002 1.35 69.40%
MinT(0)-MinT(-1), HND(0,-1) 0.159 1.07 0.008 1.01 66.90%
MinT(0)-MinT(-1), HND(0,-1,-2,-3) 0.147 1.07 0.017 1.01 66.00%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(0)-MinT(-2), MaxT(0)-MaxT(-2) 0.392 1.04 0.575 1.02 57.80%
MinT(0)-MinT(-2), MinT(0)-MinT(-1) 0.325 1.04 0.687 1.02 56.80%
MinT(0)-MinT(-2), MinT(0)-MinT(-3) 0.696 1.02 0.279 1.03 57.70%
MinT(0)-MinT(-2), AvgT(0)-AvgT(-1) 0.404 1.04 0.531 1.04 56.60%
MinT(0)-MinT(-2), AvgT(0)-AvgT(-2) 0.874 1.01 0.557 1.05 57.40%
MinT(0)-MinT(-2), AvgT(0)-AvgT(-3) 0.419 1.04 0.537 1.03 57.20%
MinT(0)-MinT(-2), MaxT(-1)-MinT(0) 0.614 1.02 0.214 0.82 57.40%
MinT(0)-MinT(-2), MinT(0) 0.644 1.02 0.095 1.09 61.80%
MinT(0)-MinT(-2), AvgMinT(0,-1) 0.206 1.05 0.204 1.01 61.70%
MinT(0)-MinT(-2), AvgT(0) 0.395 1.03 0.175 1.01 61.50%
MinT(0)-MinT(-2), DDAvgT(0) 0.395 1.03 0.175 1.01 61.50%
MinT(0)-MinT(-2), HN(0,-1,-2) 0.072 1.06 0.068 1.02 61.00%
MinT(0)-MinT(-2), HN(0,-1,-2,-3) 0.099 1.06 0.055 1.01 61.60%
MinT(0)-MinT(-2), Stl(0,-1) 0.125 1.06 0.21 0.96 60.30%
MinT(0)-MinT(-2), Stl(0,-1,-2) 0.147 1.05 0.261 0.98 59.70%
MinT(0)-MinT(-2), Stl(0,-1,-2,-3) 0.185 1.05 0.083 0.97 60.10%
MinT(0)-MinT(-2), HNW(0,-1) 0.048 1.07 0.008 1.43 65.50%
MinT(0)-MinT(-2), HNW(0,-1,-2) 0.04 1.08 0.003 1.41 67.90%
MinT(0)-MinT(-2), HNW(0,-1,-2,-3) 0.072 1.07 0.001 1.37 68.80%
MinT(0)-MinT(-2), HND(0,-1) 0.146 1.05 0.011 1.01 66.90%
MinT(0)-MinT(-2), HND(0,-1,-2,-3) 0.102 1.06 0.018 1.01 66.90%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MinT(0)-MinT(-3), MinT(0) 0.456 1.02 0.144 1.08 62.00%
MinT(0)-MinT(-3), AvgT(0) 0.262 1.02 0.246 1.01 61.00%
MinT(0)-MinT(-3), DDAvgT(0) 0.262 1.02 0.246 1.01 61.00%
MinT(0)-MinT(-3), MaxT(0)-MaxT(-2) 0.183 1.03 0.595 1.02 58.00%
MinT(0)-MinT(-3), MinT(0)-MinT(-2) 0.279 1.03 0.696 1.02 57.70%
MinT(0)-MinT(-3), AvgT(0)-AvgT(-2) 0.308 1.03 0.573 1.03 58.40%
MinT(0)-MinT(-3), AvgT(0)-AvgT(-3) 0.229 1.06 0.62 0.96 57.40%
MinT(0)-MinT(-3), AvgMinT(0,-1) 0.167 1.03 0.356 1 60.10%
MinT(0)-MinT(-3), MinT(0)-MinT(-1) 0.125 1.03 0.509 1.03 58.40%
MinT(0)-MinT(-3), AvgT(0)-AvgT(-1) 0.149 1.03 0.393 1.05 58.10%
MinT(0)-MinT(-3), MaxT(-1)-MinT(0) 0.238 1.03 0.191 0.83 59.20%
MinT(0)-MinT(-3), HN(0,-1,-2) 0.023 1.05 0.038 1.02 62.40%
MinT(0)-MinT(-3), HN(0,-1,-2,-3) 0.025 1.04 0.024 1.02 62.70%
MinT(0)-MinT(-3), Stl(0,-1) 0.056 1.04 0.193 0.96 60.90%
MinT(0)-MinT(-3), Stl(0,-1,-2) 0.061 1.04 0.222 0.97 60.20%
MinT(0)-MinT(-3), Stl(0,-1,-2,-3) 0.087 1.03 0.085 0.97 59.80%
MinT(0)-MinT(-3), HNW(0,-1) 0.029 1.04 0.01 1.41 66.20%
MinT(0)-MinT(-3), HNW(0,-1,-2) 0.013 1.05 0.002 1.44 69.90%
MinT(0)-MinT(-3), HNW(0,-1,-2,-3) 0.011 1.05 0 1.43 71.10%
MinT(0)-MinT(-3), HND(0,-1) 0.114 1.03 0.016 1.01 67.60%
MinT(0)-MinT(-3), HND(0,-1,-2,-3) 0.081 1.03 0.028 1.01 67.80%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(0)-AvgT(-1), MaxT(0)-MaxT(-2) 0.413 1.05 0.463 1.03 56.70%
AvgT(0)-AvgT(-1), MinT(0)-MinT(-1) 0.457 1.07 0.957 1 56.40%
AvgT(0)-AvgT(-1), MinT(0)-MinT(-2) 0.531 1.04 0.404 1.04 56.60%
AvgT(0)-AvgT(-1), AvgT(0)-AvgT(-2) 0.614 1.03 0.348 1.05 57.30%
AvgT(0)-AvgT(-1), MaxT(-1)-MinT(0) 0.963 1 0.217 0.77 56.40%
AvgT(0)-AvgT(-1), MinT(0) 0.417 1.04 0.066 1.09 62.60%
AvgT(0)-AvgT(-1), AvgMinT(0,-1) 0.097 1.09 0.084 1.01 62.10%
AvgT(0)-AvgT(-1), AvgT(0) 0.367 1.05 0.136 1.01 61.00%
AvgT(0)-AvgT(-1), DDAvgT(0) 0.367 1.05 0.136 1.01 61.00%
AvgT(0)-AvgT(-1), MinT(0)-MinT(-3) 0.393 1.05 0.149 1.03 58.10%
AvgT(0)-AvgT(-1), AvgT(0)-AvgT(-3) 0.348 1.05 0.332 1.04 56.60%
AvgT(0)-AvgT(-1), HN(0,-1,-2) 0.12 1.08 0.104 1.01 59.60%
AvgT(0)-AvgT(-1), HN(0,-1,-2,-3) 0.15 1.08 0.076 1.01 60.50%
AvgT(0)-AvgT(-1), Stl(0,-1) 0.152 1.08 0.268 0.97 59.20%
AvgT(0)-AvgT(-1), Stl(0,-1,-2) 0.179 1.07 0.299 0.98 58.60%
AvgT(0)-AvgT(-1), Stl(0,-1,-2,-3) 0.224 1.06 0.09 0.97 58.80%
AvgT(0)-AvgT(-1), HNW(0,-1) 0.034 1.12 0.005 1.47 65.70%
AvgT(0)-AvgT(-1), HNW(0,-1,-2) 0.068 1.1 0.005 1.37 66.80%
AvgT(0)-AvgT(-1), HNW(0,-1,-2,-3) 0.097 1.09 0.002 1.36 68.50%
AvgT(0)-AvgT(-1), HND(0,-1) 0.081 1.1 0.006 1.01 66.20%
AvgT(0)-AvgT(-1), HND(0,-1,-2,-3) 0.08 1.1 0.014 1.01 66.30%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(0)-AvgT(-2), AvgT(0) 0.384 1.04 0.212 1.01 60.90%
AvgT(0)-AvgT(-2), DDAvgT(0) 0.384 1.04 0.212 1.01 60.90%
AvgT(0)-AvgT(-2), MaxT(0)-MaxT(-2) 0.377 1.08 0.835 0.98 57.50%
AvgT(0)-AvgT(-2), MinT(0)-MinT(-1) 0.239 1.05 0.608 1.03 57.10%
AvgT(0)-AvgT(-2), MinT(0)-MinT(-2) 0.557 1.05 0.874 1.01 57.40%
AvgT(0)-AvgT(-2), MinT(0)-MinT(-3) 0.573 1.03 0.308 1.03 58.40%
AvgT(0)-AvgT(-2), AvgT(0)-AvgT(-1) 0.348 1.05 0.614 1.03 1.03
AvgT(0)-AvgT(-2), AvgT(0)-AvgT(-3) 0.395 1.05 0.695 1.02 57.00%
AvgT(0)-AvgT(-2), MaxT(-1)-MinT(0) 0.432 1.03 0.208 0.83 58.40%
AvgT(0)-AvgT(-2),MinT(0) 0.458 1.03 0.094 1.09 63.00%
AvgT(0)-AvgT(-2), AvgMinT(0,-1) 0.162 1.06 0.199 1.01 61.50%
AvgT(0)-AvgT(-2), HN(0,-1,-2) 0.052 1.08 0.054 1.02 61.10%
AvgT(0)-AvgT(-2), HN(0,-1,-2,-3) 0.085 1.07 0.056 1.01 61.10%
AvgT(0)-AvgT(-2), Stl(0,-1) 0.103 1.06 0.203 0.96 60.50%
AvgT(0)-AvgT(-2), Stl(0,-1,-2) 0.123 1.06 0.272 0.98 59.40%
AvgT(0)-AvgT(-2), Stl(0,-1,-2,-3) 0.169 1.05 0.093 0.97 59.80%
AvgT(0)-AvgT(-2), HNW(0,-1) 0.027 1.09 0.005 1.46 67.10%
AvgT(0)-AvgT(-2), HNW(0,-1,-2) 0.023 1.1 0.002 1.43 69.20%
AvgT(0)-AvgT(-2), HNW(0,-1,-2,-3) 0.051 1.08 0.001 1.37 70.00%
AvgT(0)-AvgT(-2), HND(0,-1) 0.092 1.07 0.009 1.01 67.50%
AvgT(0)-AvgT(-2), HND(0,-1,-2,-3) 0.07 1.07 0.016 1.01 68.30%



258 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

AvgT(0)-AvgT(-3), MinT(0) 0.661 1.02 0.087 1.09 62.30%
AvgT(0)-AvgT(-3), AvgT(0) 0.559 1.02 0.195 1.01 61.20%
AvgT(0)-AvgT(-3), DDAvgT(0) 0.559 1.02 0.195 1.01 61.20%
AvgT(0)-AvgT(-3), MaxT(0)-MaxT(-2) 0.477 1.03 0.574 1.03 55.80%
AvgT(0)-AvgT(-3), MinT(0)-MinT(-2) 0.537 1.03 0.419 1.04 57.20%
AvgT(0)-AvgT(-3), MinT(0)-MinT(-3) 0.62 0.96 0.229 1.06 57.40%
AvgT(0)-AvgT(-3), AvgT(0)-AvgT(-2) 0.695 1.02 0.395 1.05 57.00%
AvgT(0)-AvgT(-3), AvgMinT(0,-1) 0.311 1.04 0.262 1 59.20%
AvgT(0)-AvgT(-3), MinT(0)-MinT(-1) 0.243 1.04 0.388 1.04 56.50%
AvgT(0)-AvgT(-3), AvgT(0)-AvgT(-1) 0.332 1.04 0.348 1.05 56.60%
AvgT(0)-AvgT(-3), MaxT(-1)-MinT(0) 0.363 1.03 0.121 0.81 58.40%
AvgT(0)-AvgT(-3), HN(0,-1,-2) 0.047 1.07 0.035 1.02 61.00%
AvgT(0)-AvgT(-3), HN(0,-1,-2,-3) 0.058 1.07 0.025 1.02 61.70%
AvgT(0)-AvgT(-3), Stl(0,-1) 0.122 1.05 0.182 0.96 59.80%
AvgT(0)-AvgT(-3), Stl(0,-1,-2) 0.14 1.05 0.219 0.97 58.30%
AvgT(0)-AvgT(-3), Stl(0,-1,-2,-3) 0.198 1.04 0.082 0.97 57.80%
AvgT(0)-AvgT(-3), HNW(0,-1) 0.05 1.07 0.008 1.43 66.90%
AvgT(0)-AvgT(-3), HNW(0,-1,-2) 0.024 1.09 0.002 1.45 70.10%
AvgT(0)-AvgT(-3), HNW(0,-1,-2,-3) 0.022 1.09 0 1.44 70.80%
AvgT(0)-AvgT(-3), HND(0,-1) 0.191 1.05 0.013 1.01 67.30%
AvgT(0)-AvgT(-3), HND(0,-1,-2,-3) 0.149 1.05 0.025 1.01 67.50%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial Logistic 
Regression Model 

1st 
Variable    
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

MaxT(-1)-MinT(0), MinT(0)-MinT(-1) 0.151 0.78 0.995 1 56.60%
MaxT(-1)-MinT(0), MinT(0)-MinT(-2) 0.214 0.82 0.614 1.02 57.40%
MaxT(-1)-MinT(0), AvgT(0)-AvgT(-1) 0.217 0.77 0.963 1 56.40%
MaxT(-1)-MinT(0), AvgT(0)-AvgT(-2) 0.208 0.83 0.432 1.03 58.40%
MaxT(-1)-MinT(0), MinT(0) 0.233 0.85 0.103 1.08 61.60%
MaxT(-1)-MinT(0), AvgMinT(0,-1) 0.061 0.78 0.143 1.01 60.80%
MaxT(-1)-MinT(0), AvgT(0) 0.087 0.8 0.096 1.01 62.40%
MaxT(-1)-MinT(0), DDAvgT(0) 0.087 0.8 0.096 1.01 62.40%
MaxT(-1)-MinT(0), MaxT(0)-MaxT(-2) 0.12 0.81 0.406 1.03 58.40%
MaxT(-1)-MinT(0), MinT(0)-MinT(-3) 0.191 0.83 0.238 1.03 59.20%
MaxT(-1)-MinT(0), AvgT(0)-AvgT(-3) 0.121 0.81 0.363 1.03 58.40%
MaxT(-1)-MinT(0), HN(0,-1,-2) 0.066 0.79 0.165 1.01 58.70%
MaxT(-1)-MinT(0), HN(0,-1,-2,-3) 0.081 0.8 0.118 1.01 59.60%
MaxT(-1)-MinT(0), Stl(0,-1) 0.066 0.79 0.317 0.97 58.80%
MaxT(-1)-MinT(0), Stl(0,-1,-2) 0.078 0.79 0.359 0.98 58.80%
MaxT(-1)-MinT(0), Stl(0,-1,-2,-3) 0.103 0.81 0.116 0.98 59.90%
MaxT(-1)-MinT(0), HNW(0,-1) 0.04 0.76 0.01 1.4 65.80%
MaxT(-1)-MinT(0), HNW(0,-1,-2) 0.081 0.79 0.011 1.33 66.60%
MaxT(-1)-MinT(0), HNW(0,-1,-2,-3) 0.118 0.81 0.004 1.32 67.90%
MaxT(-1)-MinT(0), HND(0,-1) 0.04 0.75 0.004 1.01 67.00%
MaxT(-1)-MinT(0), HND(0,-1,-2,-3) 0.042 0.76 0.011 1.01 66.70%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HN(0,-1,-2), HN(0,-1,-2,-3) 0.85 1 0.284 1.02 60.20%
HN(0,-1,-2), Stl(0,-1,-2) 0.374 1.01 0.657 0.99 59.40%
HN(0,-1,-2), HNW(0,-1) 0.947 1 0.144 1.33 61.60%
HN(0,-1,-2), HNW(0,-1,-2) 0.32 0.98 0.037 1.64 68.00%
HN(0,-1,-2), HNW(0,-1,-2,-3) 0.35 0.99 0.007 1.48 68.90%
HN(0,-1,-2), MinT(0) 0.022 1 0.009 1.03 67.00%
HN(0,-1,-2), AvgMinT(0,-1) 0.037 1.02 0.041 1.01 62.80%
HN(0,-1,-2), AvgT(0) 0.015 1.02 0.011 1.02 67.30%
HN(0,-1,-2), DDAvgT(0) 0.015 1.02 0.011 1.02 67.30%
HN(0,-1,-2), MaxT(0)-MaxT(-2) 0.061 1.02 0.091 1.06 60.00%
HN(0,-1,-2), MinT(0)-MinT(-1) 0.109 1.01 0.172 1.06 59.80%
HN(0,-1,-2), MinT(0)-MinT(-2) 0.068 1.02 0.072 1.06 61.00%
HN(0,-1,-2), MinT(0)-MinT(-3) 0.038 1.02 0.023 1.05 62.40%
HN(0,-1,-2), AvgT(0)-AvgT(-1) 0.104 1.01 0.12 1.08 59.60%
HN(0,-1,-2), AvgT(0)-AvgT(-2) 0.054 1.02 0.052 1.08 61.10%
HN(0,-1,-2), AvgT(0)-AvgT(-3) 0.035 1.02 0.047 1.07 61.00%
HN(0,-1,-2), MaxT(-1)-MinT(0) 0.165 1.01 0.066 0.79 58.70%
HN(0,-1,-2), Stl(0,-1) 0.323 1.01 0.612 0.98 60.60%
HN(0,-1,-2), Stl(0,-1,-2,-3) 0.548 1.01 0.21 0.98 58.70%
HN(0,-1,-2), HND(0,-1) 0.022 1.02 0.003 1.01 68.80%
HN(0,-1,-2), HND(0,-1,-2,-3) 0.039 1.02 0.01 1.01 67.60%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HN(0,-1,-2,-3), HN(0,-1,-2) 0.284 1.02 0.85 1 60.20%
HN(0,-1,-2,-3), Stl(0,-1) 0.182 1.01 0.711 0.99 60.20%
HN(0,-1,-2,-3), Stl(0,-1,-2) 0.209 1.01 0.838 0.99 60.80%
HN(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.431 1.01 0.33 0.98 60.00%
HN(0,-1,-2,-3), HNW(0,-1) 0.45 1.01 0.187 1.24 64.80%
HN(0,-1,-2,-3), HNW(0,-1,-2) 0.98 1 0.128 1.32 67.80%
HN(0,-1,-2,-3), HNW(0,-1,-2,-3) 0.25 0.98 0.014 1.64 68.70%
HN(0,-1,-2,-3), MinT(0) 0.009 1.02 0.007 1.14 68.80%
HN(0,-1,-2,-3), AvgMinT(0,-1) 0.013 1.02 0.027 1.01 64.10%
HN(0,-1,-2,-3), AvgT(0) 0.007 1.02 0.008 1.02 68.60%
HN(0,-1,-2,-3), DDAvgT(0) 0.007 1.02 0.008 1.02 68.60%
HN(0,-1,-2,-3), MaxT(0)-MaxT(-2) 0.059 1.01 0.146 1.05 60.70%
HN(0,-1,-2,-3), MinT(0)-MinT(-1) 0.07 1.01 0.196 1.06 61.60%
HN(0,-1,-2,-3), MinT(0)-MinT(-2) 0.055 1.01 0.099 1.06 61.60%
HN(0,-1,-2,-3), MinT(0)-MinT(-3) 0.024 1.02 0.025 1.04 62.70%
HN(0,-1,-2,-3), AvgT(0)-AvgT(-1) 0.076 1.01 0.15 1.08 60.50%
HN(0,-1,-2,-3), AvgT(0)-AvgT(-2) 0.056 1.01 0.085 1.07 61.10%
HN(0,-1,-2,-3), AvgT(0)-AvgT(-3) 0.025 1.02 0.058 1.07 61.70%
HN(0,-1,-2,-3), MaxT(-1)-MinT(0) 0.118 1.01 0.081 0.8 59.60%
HN(0,-1,-2,-3), HND(0,-1) 0.008 1.02 0.002 1.01 68.90%
HN(0,-1,-2,-3), HND(0,-1,-2,-3) 0.012 1.02 0.006 1.01 67.50%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Stl(0,-1), HN(0,-1,-2,-3) 0.711 0.99 0.182 1.01 60.20%
Stl(0,-1), Stl(0,-1,-2) 0.696 0.98 0.603 0.98 57.70%
Stl(0,-1), Stl(0,-1,-2,-3) 0.922 1 0.153 0.97 56.40%
Stl(0,-1), MinT(0) 0.141 0.95 0.022 1.11 66.50%
Stl(0,-1), AvgMinT(0,-1) 0.128 0.95 0.077 1.01 62.20%
Stl(0,-1), AvgT(0) 0.132 0.95 0.038 1.01 67.30%
Stl(0,-1), DDAvgT(0) 0.132 0.95 0.038 1.01 67.30%
Stl(0,-1), MaxT(0)-MaxT(-2) 0.188 0.96 0.161 1.05 59.30%
Stl(0,-1), MinT(0)-MinT(-1) 0.268 0.97 0.213 1.06 59.60%
Stl(0,-1), MinT(0)-MinT(-2) 0.21 0.96 0.125 1.06 60.30%
Stl(0,-1), MinT(0)-MinT(-3) 0.193 0.96 0.056 1.04 60.90%
Stl(0,-1), AvgT(0)-AvgT(-1) 0.268 0.97 0.152 1.08 59.20%
Stl(0,-1), AvgT(0)-AvgT(-2) 0.203 0.96 0.103 1.06 60.50%
Stl(0,-1), AvgT(0)-AvgT(-3) 0.182 0.96 0.122 1.05 59.80%
Stl(0,-1), MaxT(-1)-MinT(0) 0.317 0.97 0.066 0.79 58.80%
Stl(0,-1), HN(0,-1,-2) 0.612 0.98 0.323 1.01 60.60%
Stl(0,-1), HNW(0,-1) 0.596 0.98 0.07 1.3 62.80%
Stl(0,-1), HNW(0,-1,-2) 0.741 0.99 0.032 1.31 68.40%
Stl(0,-1), HNW(0,-1,-2,-3) 0.889 1 0.008 1.33 68.50%
Stl(0,-1), HND(0,-1) 0.076 0.94 0.005 1.01 67.10%
Stl(0,-1), HND(0,-1,-2,-3) 0.08 0.95 0.012 1.01 65.90%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Stl(0,-1,-2), HN(0,-1,-2) 0.657 0.99 0.374 1.01 59.40%
Stl(0,-1,-2), HN(0,-1,-2,-3) 0.838 0.99 0.209 1.01 60.80%
Stl(0,-1,-2), Stl(0,-1) 0.603 0.98 0.696 0.98 57.70%
Stl(0,-1,-2), Stl(0,-1,-2,-3) 0.583 1.02 0.132 0.96 54.60%
Stl(0,-1,-2), MinT(0) 0.14 0.97 0.021 1.11 66.60%
Stl(0,-1,-2), AvgMinT(0,-1) 0.125 0.97 0.067 1.01 62.00%
Stl(0,-1,-2), AvgT(0) 0.132 0.97 0.035 1.01 65.70%
Stl(0,-1,-2), DDAvgT(0) 0.132 0.97 0.035 1.01 65.70%
Stl(0,-1,-2), MaxT(0)-MaxT(-2) 0.247 0.97 0.19 1.04 57.50%
Stl(0,-1,-2), MinT(0)-MinT(-1) 0.272 0.98 0.238 1.05 59.20%
Stl(0,-1,-2), MinT(0)-MinT(-2) 0.261 0.98 0.147 1.05 59.70%
Stl(0,-1,-2), MinT(0)-MinT(-3) 0.222 0.97 0.061 1.04 60.20%
Stl(0,-1,-2), AvgT(0)-AvgT(-1) 0.299 0.98 0.179 0.97 58.60%
Stl(0,-1,-2), AvgT(0)-AvgT(-2) 0.272 0.98 0.123 1.06 59.40%
Stl(0,-1,-2), AvgT(0)-AvgT(-3) 0.219 0.97 0.14 1.05 58.30%
Stl(0,-1,-2), MaxT(-1)-MinT(0) 0.359 0.98 0.078 0.79 58.80%
Stl(0,-1,-2), HNW(0,-1) 0.496 0.98 0.069 1.29 65.00%
Stl(0,-1,-2), HNW(0,-1,-2) 0.778 0.99 0.041 1.3 68.40%
Stl(0,-1,-2), HNW(0,-1,-2,-3) 0.99 1 0.01 1.33 67.90%
Stl(0,-1,-2), HND(0,-1) 0.068 0.96 0.004 1.01 67.50%
Stl(0,-1,-2), HND(0,-1,-2,-3) 0.063 0.96 0.01 1.01 66.90%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

Stl(0,-1,-2,-3), HN(0,-1,-2,-3) 0.33 0.98 0.431 1.01 60.00%
Stl(0,-1,-2,-3), Stl(0,-1) 0.153 0.97 0.922 1 56.40%
Stl(0,-1,-2,-3), Stl(0,-1,-2) 0.132 0.96 0.583 1.02 54.60%
Stl(0,-1,-2,-3), MinT(0) 0.039 0.97 0.021 1.12 65.80%
Stl(0,-1,-2,-3), AvgMinT(0,-1) 0.034 0.97 0.063 1.01 61.20%
Stl(0,-1,-2,-3), AvgT(0) 0.037 0.97 0.036 1.01 64.40%
Stl(0,-1,-2,-3), DDAvgT(0) 0.037 0.97 0.036 1.01 64.40%
Stl(0,-1,-2,-3), MaxT(0)-MaxT(-2) 0.084 0.97 0.251 1.04 57.30%
Stl(0,-1,-2,-3), MinT(0)-MinT(-1) 0.077 0.97 0.267 1.05 59.20%
Stl(0,-1,-2,-3), MinT(0)-MinT(-2) 0.083 0.97 0.185 1.05 60.10%
Stl(0,-1,-2,-3), MinT(0)-MinT(-3) 0.085 0.97 0.087 1.03 59.80%
Stl(0,-1,-2,-3), AvgT(0)-AvgT(-1) 0.09 0.97 0.224 1.06 58.80%
Stl(0,-1,-2,-3), AvgT(0)-AvgT(-2) 0.093 0.97 0.169 1.05 59.80%
Stl(0,-1,-2,-3), AvgT(0)-AvgT(-3) 0.082 0.97 0.198 1.04 57.80%
Stl(0,-1,-2,-3), MaxT(-1)-MinT(0) 0.116 0.98 0.103 0.81 59.90%
Stl(0,-1,-2,-3), HN(0,-1,-2) 0.21 0.98 0.548 1.01 58.70%
Stl(0,-1,-2,-3), HNW(0,-1) 0.12 0.98 0.072 1.27 63.80%
Stl(0,-1,-2,-3), HNW(0,-1,-2) 0.269 0.98 0.065 1.26 67.00%
Stl(0,-1,-2,-3), HNW(0,-1,-2,-3) 0.479 0.99 0.024 1.28 68.20%
Stl(0,-1,-2,-3), HND(0,-1) 0.012 0.96 0.003 1.01 67.20%
Stl(0,-1,-2,-3), HND(0,-1,-2,-3) 0.013 0.96 0.008 1.01 66.80%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st Variable 
P-Value

1st Variable 
Odds Ratio

2nd Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HNW(0,-1), HN(0,-1,-2) 0.144 1.33 0.947 1 61.60%
HNW(0,-1), HN(0,-1,-2,-3) 0.187 1.24 0.45 1.01 64.80%
HNW(0,-1), HNW(0,-1,-2) 0.781 1.06 0.193 1.28 68.10%
HNW(0,-1), HNW(0,-1,-2,-3) 0.862 1.03 0.034 1.32 68.50%
HNW(0,-1), MinT(0) 0.016 1.38 0.023 1.11 67.30%
HNW(0,-1), AvgMinT(0,-1) 0.027 1.34 0.133 1.01 63.50%
HNW(0,-1), AvgT(0) 0.011 1.41 0.019 1.02 67.90%
HNW(0,-1), DDAvgT(0) 0.011 1.41 0.019 1.02 67.90%
HNW(0,-1), MaxT(0)-MaxT(-2) 0.006 1.45 0.046 1.07 68.30%
HNW(0,-1), MinT(0)-MinT(-1) 0.009 1.42 0.081 1.08 64.40%
HNW(0,-1), MinT(0)-MinT(-2) 0.008 1.43 0.048 1.07 65.50%
HNW(0,-1), MinT(0)-MinT(-3) 0.01 1.41 0.029 1.04 66.20%
HNW(0,-1), AvgT(0)-AvgT(-1) 0.005 1.47 0.034 1.12 65.70%
HNW(0,-1), AvgT(0)-AvgT(-2) 0.005 1.46 0.027 1.09 67.10%
HNW(0,-1), AvgT(0)-AvgT(-3) 0.008 1.43 0.05 1.07 66.90%
HNW(0,-1), MaxT(-1)-MinT(0) 0.01 1.4 0.04 0.76 65.80%
HNW(0,-1), Stl(0,-1) 0.07 1.3 0.596 0.98 62.80%
HNW(0,-1), Stl(0,-1,-2) 0.069 1.29 0.496 0.98 65.00%
HNW(0,-1), Stl(0,-1,-2,-3) 0.072 1.27 0.12 0.98 63.80%
HNW(0,-1), HND(0,-1) 0.11 1.26 0.031 1.01 64.00%
HNW(0,-1), HND(0,-1,-2,-3) 0.082 1.27 0.062 1.01 64.10%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HNW(0,-1,-2), HN(0,-1,-2) 0.037 1.64 0.32 0.98 68.00%
HNW(0,-1,-2), HN(0,-1,-2,-3) 0.128 1.32 0.98 1 67.80%
HNW(0,-1,-2), HNW(0,-1) 0.193 1.28 0.781 1.06 68.10%
HNW(0,-1,-2), HNW(0,-1,-2,-3) 0.913 0.98 0.082 1.36 68.00%
HNW(0,-1,-2), MinT(0) 0.004 1.39 0.016 1.13 70.40%
HNW(0,-1,-2), AvgMinT(0,-1) 0.007 1.36 0.081 1.01 67.50%
HNW(0,-1,-2), AvgT(0) 0.002 1.43 0.01 1.02 71.60%
HNW(0,-1,-2), DDAvgT(0) 0.002 1.43 0.01 1.02 71.60%
HNW(0,-1,-2), MaxT(0)-MaxT(-2) 0.003 1.41 0.042 1.07 69.50%
HNW(0,-1,-2), MinT(0)-MinT(-1) 0.006 1.36 0.118 1.07 67.70%
HNW(0,-1,-2), MinT(0)-MinT(-2) 0.003 1.41 0.04 1.08 67.90%
HNW(0,-1,-2), MinT(0)-MinT(-3) 0.002 1.44 0.013 1.05 69.90%
HNW(0,-1,-2), AvgT(0)-AvgT(-1) 0.005 1.37 0.068 1.1 66.80%
HNW(0,-1,-2), AvgT(0)-AvgT(-2) 0.002 1.43 0.023 1.1 69.20%
HNW(0,-1,-2), AvgT(0)-AvgT(-3) 0.002 1.45 0.024 1.09 70.10%
HNW(0,-1,-2), MaxT(-1)-MinT(0) 0.011 1.33 0.081 0.79 66.60%
HNW(0,-1,-2), Stl(0,-1) 0.032 1.31 0.741 0.99 68.40%
HNW(0,-1,-2), Stl(0,-1,-2) 0.041 1.3 0.778 0.99 68.40%
HNW(0,-1,-2), Stl(0,-1,-2,-3) 0.065 1.26 0.269 0.98 67.00%
HNW(0,-1,-2), HND(0,-1) 0.03 1.29 0.022 1.01 67.90%
HNW(0,-1,-2), HND(0,-1,-2,-3) 0.037 1.28 0.062 1.01 67.80%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable    
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HNW(0,-1,-2,-3), HN(0,-1,-2) 0.007 1.48 0.35 0.99 68.90%
HNW(0,-1,-2,-3), HN(0,-1,-2,-3) 0.014 1.64 0.25 0.98 68.70%
HNW(0,-1,-2,-3), HNW(0,-1) 0.034 1.32 0.862 1.03 68.50%
HNW(0,-1,-2,-3), HNW(0,-1,-2) 0.082 1.36 0.913 0.98 68.00%
HNW(0,-1,-2,-3), MinT(0) 0.001 1.4 0.013 1.13 72.10%
HNW(0,-1,-2,-3), AvgMinT(0,-1) 0.001 1.38 0.058 1.01 68.80%
HNW(0,-1,-2,-3), AvgT(0) 0 1.45 0.006 1.02 73.00%
HNW(0,-1,-2,-3), DDAvgT(0) 0 1.45 0.006 1.02 73.00%
HNW(0,-1,-2,-3), MaxT(0)-MaxT(-2) 0.002 1.36 0.087 1.06 69.40%
HNW(0,-1,-2,-3), MinT(0)-MinT(-1) 0.002 1.35 0.156 1.07 69.40%
HNW(0,-1,-2,-3), MinT(0)-MinT(-2) 0.001 1.37 0.072 1.07 68.80%
HNW(0,-1,-2,-3), MinT(0)-MinT(-3) 0 1.43 0.011 1.05 71.10%
HNW(0,-1,-2,-3), AvgT(0)-AvgT(-1) 0.002 1.36 0.097 1.09 68.50%
HNW(0,-1,-2,-3), AvgT(0)-AvgT(-2) 0.001 1.37 0.051 1.08 70.00%
HNW(0,-1,-2,-3), AvgT(0)-AvgT(-3) 0 1.44 0.022 1.09 70.80%
HNW(0,-1,-2,-3), MaxT(-1)-MinT(0) 0.004 1.32 0.118 0.81 67.90%
HNW(0,-1,-2,-3), Stl(0,-1) 0.008 1.33 0.889 1 68.50%
HNW(0,-1,-2,-3), Stl(0,-1,-2) 0.01 1.33 0.99 1 67.90%
HNW(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.024 1.28 0.479 0.99 68.20%
HNW(0,-1,-2,-3), HND(0,-1) 0.006 1.32 0.02 1.01 69.50%
HNW(0,-1,-2,-3), HND(0,-1,-2,-3) 0.009 1.3 0.064 1.01 68.40%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HND(0,-1), HND(0,-1,-2,-3) 0.199 1.01 0.974 1 63.60%
HND(0,-1), MinT(0) 0.067 1.01 0.141 1.07 67.30%
HND(0,-1), AvgMinT(0,-1) 0.039 1.01 0.515 1 65.40%
HND(0,-1), AvgT(0) 0.071 1.01 0.194 1.01 67.30%
HND(0,-1), DDAvgT(0) 0.071 1.01 0.194 1.01 67.30%
HND(0,-1), MaxT(0)-MaxT(-2) 0.008 1.01 0.115 1.06 66.70%
HND(0,-1), MinT(0)-MinT(-1) 0.008 1.01 0.159 1.07 66.90%
HND(0,-1), MinT(0)-MinT(-2) 0.011 1.01 0.146 1.05 66.90%
HND(0,-1), MinT(0)-MinT(-3) 0.016 1.01 0.114 1.03 67.60%
HND(0,-1), AvgT(0)-AvgT(-1) 0.006 1.01 0.081 1.1 66.20%
HND(0,-1), AvgT(0)-AvgT(-2) 0.009 1.01 0.092 1.07 67.50%
HND(0,-1), AvgT(0)-AvgT(-3) 0.013 1.01 0.191 1.05 67.30%
HND(0,-1), MaxT(-1)-MinT(0) 0.004 1.01 0.04 0.75 67.00%
HND(0,-1), HN(0,-1,-2) 0.003 1.01 0.022 1.02 68.80%
HND(0,-1), HN(0,-1,-2,-3) 0.002 1.01 0.008 1.02 68.90%
HND(0,-1), Stl(0,-1) 0.005 1.01 0.076 0.94 67.10%
HND(0,-1), Stl(0,-1,-2) 0.004 1.01 0.068 0.96 67.50%
HND(0,-1), Stl(0,-1,-2,-3) 0.003 1.01 0.012 0.96 67.20%
HND(0,-1), HNW(0,-1) 0.031 1.01 0.11 1.26 64.00%
HND(0,-1), HNW(0,-1,-2) 0.022 1.01 0.03 1.29 67.90%
HND(0,-1), HNW(0,-1,-2,-3) 0.02 1.01 0.006 1.32 69.50%
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New Snow Binomial Logistic Regression Results

Predictor Variables in Binomial 
Logistic Regression Model 

1st 
Variable 
P-Value

1st Variable 
Odds Ratio

2nd 
Variable 
P-Value

2nd 
Variable 
Odds Ratio

Percent 
Concordant 
Pairs

HND(0,-1,-2,-3), HND(0,-1) 0.974 1 0.199 1.01 63.60%
HND(0,-1,-2,-3), MinT(0) 0.121 1.01 0.097 1.08 66.30%
HND(0,-1,-2,-3), AvgMinT(0,-1) 0.086 1.01 0.383 1 64.40%
HND(0,-1,-2,-3), AvgT(0) 0.126 1.01 0.126 1.01 66.60%
HND(0,-1,-2,-3), DDAvgT(0) 0.126 1.01 0.126 1.01 66.60%
HND(0,-1,-2,-3), MaxT(0)-MaxT(-2) 0.017 1.01 0.105 1.06 67.20%
HND(0,-1,-2,-3), MinT(0)-MinT(-1) 0.017 1.01 0.147 1.07 66.00%
HND(0,-1,-2,-3), MinT(0)-MinT(-2) 0.018 1.01 0.102 1.06 66.90%
HND(0,-1,-2,-3), MinT(0)-MinT(-3) 0.028 1.01 0.081 1.03 67.80%
HND(0,-1,-2,-3), AvgT(0)-AvgT(-1) 0.014 1.01 0.08 1.1 66.30%
HND(0,-1,-2,-3), AvgT(0)-AvgT(-2) 0.016 1.01 0.07 1.07 68.30%
HND(0,-1,-2,-3), AvgT(0)-AvgT(-3) 0.025 1.01 0.149 1.05 67.50%
HND(0,-1,-2,-3), MaxT(-1)-MinT(0) 0.011 1.01 0.042 0.76 66.70%
HND(0,-1,-2,-3), HN(0,-1,-2) 0.01 1.01 0.039 1.02 67.60%
HND(0,-1,-2,-3), HN(0,-1,-2,-3) 0.006 1.01 0.012 1.02 67.50%
HND(0,-1,-2,-3), Stl(0,-1) 0.012 1.01 0.08 0.95 65.90%
HND(0,-1,-2,-3), Stl(0,-1,-2) 0.01 1.01 0.063 0.96 66.90%
HND(0,-1,-2,-3), Stl(0,-1,-2,-3) 0.008 1.01 0.013 0.96 66.80%
HND(0,-1,-2,-3), HNW(0,-1) 0.062 1.01 0.082 1.27 64.10%
HND(0,-1,-2,-3), HNW(0,-1,-2) 0.062 1.01 0.037 1.28 67.80%
HND(0,-1,-2,-3), HNW(0,-1,-2,-3) 0.064 1.01 0.009 1.3 68.40%
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“OLD SNOW MODEL SELECTION RESULTS” 
 
The following charts provide the old snow model selection results.  The five best old 
snow predictor variables are used to create the following models from which the top three 
and final old snow wet avalanche probability models were chosen. 
 

 

Old Snow Model Selection Results

Model Variables Day of Year Day of Year
P-value 0.021 0.233
Odds Ratio 1.05 1.06
% Con, Dis, Tie 62.70% 34.60% 2.70% 62.10% 34.60% 3.30%

Model Variables MaxT(0) MaxT(0)
P-value 0 0.131
Odds Ratio 1.07 1.05
% Con, Dis, Tie 72.60% 24.60% 2.80% 69.20% 28.50% 2.30%

Model Variables MinT(0) MinT(0)
P-value 0.007 0.076
Odds Ratio 1.18 1.18
% Con, Dis, Tie 67.60% 28.10% 4.40% 70.30% 24.90% 4.90%

Model Variables AvgT(0) AvgT(0)
P-value 0 0.079
Odds Ratio 1.01 1.01
% Con, Dis, Tie 73.30% 25.40% 1.30% 73.30% 25.10% 1.50%

Model Variables HS(0)-HS(-2) HS(0)-HS(-2)
P-value 0.001 0.288
Odds Ratio 0.9 0.95
% Con, Dis, Tie 68.10% 21.10% 10.80% 68.20% 20.00% 11.80%

Model Variables MaxT(0) HS(0)-HS(-2)  MaxT(0) HS(0)-HS(-2)  
P-value 0.001 0.005 0.107 0.207
Odds Ratio 1.07 0.9 1.06 0.93
% Con, Dis, Tie 77.30% 21.80% 0.80% 73.80% 25.40% 0.80%

Model Variables MinT(0) Day  MinT(0) Day  
P-value 0.016 0.038 0.126 0.499
Odds Ratio 1.16 1.05 1.16 1.03
% Con, Dis, Tie 71.20% 28.10% 0.70% 71.50% 26.90% 1.50%

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 
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Old Snow Model Selection Results

Model Variables MinT(0) Day HS(0)-HS(-2) MinT(0) Day HS(0)-HS(-2)
P-value 0.031 0.067 0.007 0.115 0.623 0.374
Odds Ratio 1.14 1.05 0.9 1.15 1.02 0.94
% Con, Dis, Tie 75.00% 24.20% 0.80% 74.60% 24.60% 0.80%

Model Variables MinT(0) HS(0)-HS(-2)  MinT(0) HS(0)-HS(-2)  
P-value 0.013 0.004 0.08 0.3
Odds Ratio 1.16 0.9 1.17 0.94
% Con, Dis, Tie 75.00% 24.00% 1.00% 72.80% 24.10% 3.10%

Model Variables AvgT(0) HS(0)-HS(-2)  AvgT(0) HS(0)-HS(-2)  
P-value 0 0.008 0.075 0.267
Odds Ratio 1.01 0.91 1.01 0.93
% Con, Dis, Tie 76.20% 22.90% 1.00% 74.60% 24.40% 1.00%

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 
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“NEW SNOW MODEL SELECTION RESULTS” 
 
  The following charts provide the new snow model selection results.  The ten best new snow predictor variables 
are used to create the following models from which the top three and final new snow wet avalanche probability models were 
chosen. 

 

New Snow Model Selection Results

Model Variables MinT(0) MinT(0)
P-value 0.03 0.028
Odds Ratio 1.11 1.2
% Con, Dis, Tie 60.70% 34.20% 5.10% 66.90% 28.80% 4.30%

Model Variables MaxT(-1)-MinT(0) MaxT(-1)-MinT(0)
P-value 0.049 0.009
Odds Ratio 0.78 0.56
% Con, Dis, Tie 56.40% 39.40% 4.20% 75.20% 22.10% 2.70%

Model Variables HN(0,-1,-2) HN(0,-1,-2)
P-value 0.118 0.446
Odds Ratio 1.01 1.01
% Con, Dis, Tie 59.70% 31.90% 8.40% 57.80% 36.20% 6.00%

Model Variables HN(0,-1,-2,-3) HN(0,-1,-2,-3)
P-value 0.063 0.261
Odds Ratio 1.01 1.02
% Con, Dis, Tie 60.60% 33.10% 6.30% 62.60% 33.90% 3.60%

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset
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New Snow Model Selection Results

Model Variables Stl(0,-1,-2,-3) Stl(0,-1,-2,-3)
P-value 0.052 0.034
Odds Ratio 0.97 0.95
% Con, Dis, Tie 55.40% 38.30% 6.30% 64.70% 29.80% 5.50%

Model Variables HNW(0,-1) HNW(0,-1)
P-value 0.022 0.681
Odds Ratio 1.35 1.13
% Con, Dis, Tie 60.50% 32.40% 7.10% 49.60% 37.90% 12.60%

Model Variables HNW(0,-1,-2) HNW(0,-1,-2)
P-value 0.01 0.416
Odds Ratio 1.33 1.22
% Con, Dis, Tie 67.80% 27.80% 4.40% 56.90% 37.90% 5.20%

Model Variables HNW(0,-1,-2,-3) HNW(0,-1,-2,-3)
P-value 0.002 0.182
Odds Ratio 1.34 1.32
% Con, Dis, Tie 68.30% 28.00% 3.70% 62.60% 34.00% 3.30%

Model Variables HND(0,-1) HND(0,-1)
P-value 0.01 0.428
Odds Ratio 1.01 1
% Con, Dis, Tie 63.20% 32.80% 4.00% 50.30% 44.50% 5.20%

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset
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New Snow Model Selection Results

Model Variables HND(0,-1,-2,-3) HND(0,-1,-2,-3)
P-value 0.024 0.514
Odds Ratio 1.01 1
% Con, Dis, Tie 62.60% 33.80% 3.60% 50.40% 43.90% 5.70%

Model Variables MinT(0) HN(0,-1,-2) MinT(0) HN(0,-1,-2)
P-value 0.009 0.022 0.01 0.109
Odds Ratio 1.14 1.02 1.26 1.03
% Con, Dis, Tie 67.00% 30.80% 2.20% 70.60% 28.10% 1.20%

Model Variables MinT(0) HN(0,-1,-2) Stl(0,-1,-2,-3) MinT(0) HN(0,-1,-2) Stl(0,-1,-2,-3)
P-value 0.012 0.191 0.377 1.29 1.01 0.92
Odds Ratio 1.14 1.01 0.98 1.08 0.96 0.86
% Con, Dis, Tie 67.50% 30.40% 2.10% 79.90% 19.50% 0.60%

Model Variables MinT(0) HN(0,-1,-2,-3) MinT(0) HN(0,-1,-2,-3)
P-value 0.007 0.009 0.09 0.036
Odds Ratio 1.14 1.02 1.3 1.04
% Con, Dis, Tie 68.80% 29.30% 1.80% 75.10% 24.20% 0.70%

Model Variables MinT(0) Stl(0,-1,-2,-3) MinT(0) Stl(0,-1,-2,-3)
P-value 0.021 0.039 0.005 0.006
Odds Ratio 1.12 0.97 1.28 0.92
% Con, Dis, Tie 65.80% 32.00% 2.20% 80.10% 19.30% 0.60%

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset
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New Snow Model Selection Results

Model Variables MinT(0) HNW(0,-1) MinT(0) HNW(0,-1)
P-value 0.023 0.016 0.026 0.518
Odds Ratio 1.11 1.38 1.2 1.23
% Con, Dis, Tie 67.30% 30.70% 2.00% 68.50% 30.50% 1.00%

Model Variables MinT(0) HNW(0,-1) MaxT(-1)-MinT(0) MinT(0) HNW(0,-1) MaxT(-1)-MinT(0)
P-value 0.087 0.011 0.214 0.372 0.411 0.085
Odds Ratio 1.09 1.4 0.83 1.09 1.31 0.63
% Con, Dis, Tie 68.30% 30.00% 1.70% 72.70% 26.10% 1.20%

Model Variables MinT(0) HNW(0,-1,-2) MinT(0) HNW(0,-1,-2)
P-value 0.016 0.004 0.023 0.273
Odds Ratio 1.13 1.39 1.21 1.34
% Con, Dis, Tie 70.40% 27.80% 1.80% 68.60% 30.20% 1.20%

Model Variables MinT(0) HNW(0,-1,-2,-3) MinT(0) HNW(0,-1,-2,-3)
P-value 0.013 0.001 0.016 0.078
Odds Ratio 1.13 1.4 1.24 1.51
% Con, Dis, Tie 72.10% 26.40% 1.50% 71.90% 27.30% 0.70%

Model Variables MinT(0) HNW(0,-1,-2,-3) MaxT(-1)-MinT(0) MinT(0) HNW(0,-1,-2,-3) MaxT(-1)-MinT(0)
P-value 0.033 0.001 0.574 0.214 0.197 0.215
Odds Ratio 1.12 1.39 0.92 1.14 1.38 0.71
% Con, Dis, Tie 72.10% 26.60% 1.40% 74.40% 24.80% 0.80%

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset
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New Snow Model Selection Results

Model Variables MaxT(-1)-MinT(0) HNW(0,-1) MaxT(-1)-MinT(0) HNW(0,-1)
P-value 0.04 0.01 0.008 0.403
Odds Ratio 0.76 1.4 0.55 1.31
% Con, Dis, Tie 65.80% 31.40% 2.80% 74.00% 25.40% 0.60%

Model Variables MaxT(-1)-MinT(0) HNW(0,-1) MinT(0) MaxT(-1)-MinT(0) HNW(0,-1) MinT(0)
P-value 0.214 0.011 0.087 0.085 0.411 0.372
Odds Ratio 0.83 1.4 1.09 0.63 1.31 1.09
% Con, Dis, Tie 68.30% 30.00% 1.70% 72.70% 26.10% 1.20%

Model Variables MaxT(-1)-MinT(0) HNW(0,-1) MinT(0)-MinT(-3) MaxT(-1)-MinT(0) HNW(0,-1) MinT(0)-MinT(-3)
P-value 0.2 0.007 0.143 0.045 0.468 0.159
Odds Ratio 0.83 1.43 1.03 0.61 1.28 1.05
% Con, Dis, Tie 68.80% 29.40% 1.80% 74.80% 24.50% 0.70%

Training Dataset Testing Dataset

Training Dataset Testing Dataset

Training Dataset Testing Dataset
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“WET AVALANCHE PREDICTION MODEL CALCULATIONS” 
 

The following steps can be followed to create the old snow and new snow wet avalanche 
models in Microsoft Excel or similar program.  Always compare the old snow model 
results with Figure 11 and Figures 19 through 22 in the main text.  Always compare the 
new snow model results with Figures 29 through 33 in the main text. Refer to the “Help” 
document in this Appendix for model result interpretation 
 
Use Figure 34 as a template for your Excel spreadsheet.  Referring to Figure 34, the 
following equations should be entered in the red (or gray) cells that fall under  “DO NOT 
TYPE IN THIS COLUMN” 
 
New Snow Model: 
1.  In the red (or gray) cell after the line “Enter today’s recorded, or expected minimum 

temperature (degrees Fahrenheit):” enter the following equation 
 
 =(click on cell that you will enter Fahrenheit degrees - 32)/1.8 
  
 Example:   =(H18-32)/1.8 
 

If you have done this correctly 32°F will automatically be converted to “0.0°C.”  
0.0°C will appear in the red (or gray cell). 

 
2.  In the red (or gray) cell after the line “Enter today’s recorded, or expected snow water 

equivalent (inches):” enter the following equation 
 
 =(click on cell that you will enter SWE in inches)*2.54  
 

Example:  =H20*2.54 
 

If you have done this correctly 2 inches of SWE will automatically be converted 
to 5.1cm of SWE. “5.1”cm will appear in the red (or gray) cell. 

 
3.  In the red (or gray) cell after the line “Enter yesterday’s recorded snow water 

equivalent (inches):” enter the following equation. 
 
 =(click on cell that you will enter SWE in inches)*2.54  
 

Example:  =H20*2.54 
 

If you have done this correctly 0.5 inches of SWE will automatically be converted 
to 1.3cm of SWE.  “1.3”cm will appear in the red (or gray) cell. 
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4.  In the red (or gray) cell after the line “Enter the day before yesterday’s recorded snow 
water equivalent (inches):” enter the following equation. 

 
 =(click on cell that you will enter SWE in inches)*2.54  
 

Example:  =H20*2.54 
 

If you have done this correctly 0.1 inches of SWE will automatically be converted to 
0.3cm of SWE.  “0.3”cm will appear in the red (or gray) cell. 

 
5.  In the red (or gray) cell after the line “Enter the snow water equivalent measured two 

days before yesterday (inches):” enter the following equation. 
 
 =(click on cell that you will enter SWE in inches)*2.54  
 

Example:  =H20*2.54 
 

If you have done this correctly 0.3 inches of SWE will automatically be converted to 
0.8cm of SWE.  “0.8”cm will appear in the red (or gray) cell. 

 
6.  The red (or gray) cell directly below the last snow water equivalent value will sum the 

four snow water equivalent entries. 
 
 =Sum(click on all four red (or gray) SWE cells)  
 

Example:  =SUM(I20:I23) 
 

If you have done this correctly your cumulative SWE value should equal 2.3cm.  
“2.3”cm will appear in the red (or gray) cell. 

 
7.  The last red cell contains the new snow model equation.  Type the following equation 

into the red (or gray) cell. 
 
=(EXP((0.14572*click on red minimum temp red cell)+(0.3371*click on red cumulative 
SWE cell))/(1+(EXP((0.14572*click on red minimum temp cell)+(0.3371*click on red 
cumulative SWE cell)))))  
 
Example:  
=(EXP((0.14572*I18)+(0.3371*I24))/(1+(EXP((0.14572*I18)+(0.3371*I24))))) 
 

If you have done this correctly your wet avalanche probability is 92%. 
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Old Snow Model: 
1.  In the red (or gray) cell after the line “Enter today’s recorded, or expected minimum 

temperature (degrees Fahrenheit):” enter the following equation. 
 
 =(click on cell that you will enter Fahrenheit degrees - 32)/1.8 
  
 Example:   =(H18-32)/1.8 
 

If you have done this correctly 27°F will automatically be converted to –2.8°C in 
the red (or gray cell). “–2.8”°C will appear in the red (or gray) cell. 

 
2.  In the red (or gray) cell after the line “Enter today’s recorded total snow depth 

(inches):” enter the following equation. 
 
 =(click on cell that you will enter total snow depth in inches)*2.54  
 

Example:  =H20*2.54 
 

If you have done this correctly 59 inches of total snow depth will automatically be 
converted to 149.9 cm of total snow depth.  “149.9”cm will appear in the red (or 
gray) cell. 

 
3.  In the red (or gray) cell after the line “Enter day before yesterday’s recorded total 

snow depth (inches):” enter the following equation. 
 
 =(click on cell that you will enter total snow depth in inches)*2.54  
 

Example:  =H20*2.54 
 

If you have done this correctly 61 inches of total snow depth will automatically be 
converted to 154.9cm of total snow depth. “154.9”cm will appear in the red (or 
gray) cell. 

 
4.  The red (or gray) cell directly below the last total snow depth value calculates the 

difference between the two snow depth measurements above. Enter the following 
equation. 

 
=(click on first total snow depth red cell)-(click on second total snow depth red cell)  
 

Example:  =I37-I38 
 

If you have done this correctly two day change in total snow depth should equal   
–5.1cm.  “-5.1”cm will appear in the red (or gray) cell. 
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5.  The last red cell contain the old snow model equation 
 
=(EXP((0.14811*click on minimum temp red cell) + (-0.09047*click on change in total 
snow depth red cell))/(1+(EXP((0.14811*click on minimum temp red cell)+                    
(-0.09047*click on change in total snow depth red cell)))))  
 
Example:   
=(EXP((0.14811*I35)+(-0.09047*I39))/(1+(EXP((0.14811*I35)+(-0.09047*I39))))) 
 

If you have done this correctly your wet avalanche probability is 51%. 
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“BRIDGER BOWL WET AVALANCHE MODELS HELP PAGE” 

 
**It is recommended that you read “March Wet Avalanche Prediction at Bridger Bowl 
Ski Area, Montana” (Romig, 2004) for information regarding how these models were 
developed, how to interpret the variables, and the intended purpose for these models. 
 
What are the equations for the new and old snow prediction models? 
 
New Snow Equation: 
(Exp((0.14572*MinT0)+(0.33710*HNW0,-1,-2,-3)) ÷ (1+((0.14572* MinT0)+(0.33710* HNW0,-1,-2,-3)))) 
 
Where MinT0 = today’s recorded or expected minimum temperature (°C) 

HNW0,-1,-2,-3 = the cumulative snow water equivalent (SWE) from today, 
yesterday, one day before yesterday and two days before yesterday (cm). 
 

Old Snow Equation:  
(EXP((0.14811* MinT0)+(-0.09047*HS0-HS-2)) ÷ (1+(EXP((0.14811* MinT0)+(-0.09047* HS0-HS-2))))) 
 
Where MinT0 = today’s recorded or expected minimum temperature 

HS0 – HS-2 = the difference between today’s recorded total snowpack depth and 
the day before yesterday’s total snowpack depth (cm) 

 
 
How do I convert from Fahrenheit to Celsius and inches to centimeters? 

Fahrenheit to Celsius: Subtract 32 from Fahrenheit temperature and divide by 1.8 to get 
Celsius temperature. 
 
Inches to Centimeters:  Multiply inches by 2.54 to get centimeters. 
 
 
What do the variable subscripts mean (i.e. MinT0, HNW0,-1,-2,-3)? 
 

This study defines the variables within each dataset in terms of ‘prediction day’ 

(0), ‘one day prior’ (-1), ‘two days prior’ (-2), and ‘three days prior’ (-3).  ‘Prediction 

day’ always refers to the day the model is predicting for, usually the current day, and is 

the day that the ‘one day prior’, ‘two days prior’ and ‘three days prior’ variables lead up 

to.  A ‘prediction day’ may or may not have recorded wet avalanches.  ‘One day prior’ 

always refers to the day that is one day prior to the ‘prediction day’; ‘two days prior’ 
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always refers to the day that is two days prior to the ‘prediction day’; and ‘three days 

prior’ always refers to the day that is three days prior to the ‘prediction day’.  The figure 

below serves as an example for the time-lag concept.  Suppose that today, the day wet 

avalanche probability is being predicted for, is Monday.  Any variable with an 

observation taken on this day is given a ‘0’ subscript.  Sunday is considered one day prior 

to the prediction day and any observation taken on this day is given a ‘-1’ subscript. 

Saturday is two days prior to the prediction day and observations taken on this day are 

given subscript of ‘-2’.  Friday is three days prior to the prediction day and observations 

taken on this day are given a ‘-3’ subscript. Variables with only one subscript, such as 

MinT0, are single day measurements.  Variables with more than one subscript are 

cumulative day measurements, and the subscript numbers refer to which days are 

included in the cumulative measurement.  For example, HNW0,-1,-2,-3 is the cumulative 

new snow water equivalent that is calculated by adding the SWE for the prediction day 

(0), one day prior (-1), two days prior (-2) and three days prior (-3) to the prediction day. 

 

 

 

  

 

 

 

Friday 
Three Days Prior 

Variable -3 

Saturday 
Two Days Prior 

Variable -2 

Sunday 
One Day Prior 

Variable-1 

Monday 
Prediction Day 

Variable0 

“One Day Cumulative Variable”        

      “Two Day Cumulative Variable” 

    “Three Day Cumulative Variable”                                                     
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How do I interpret the model results?  And what are the other graphs for? 

 When you enter the correct information into the New Snow and Old Snow 

Prediction Models, the models will calculate today's probability for wet avalanche 

conditions. The New Snow Model is has a 72% overall success rate and the Old Snow 

Model has a 75% overall success rate.  This means that the New Snow Model calculated 

accurate wet avalanche probabilities for 72% of the new snow dataset, and the Old Snow 

Model calculated accurate wet avalanche probabilities for 75% of the old snow dataset. In 

order to gain more confidence in the probability the model is predicting, it is strongly 

recommended that you compare the model's prediction and the data collected from the 

Alpine weather station to the five graphs old snow and new snow graphs described 

below. 

 
Old Snow Prediction Model Graphs 

The "Old Snow Model: MinT0, HS0-HS-2 1968-2001 Results" graph below 

describes the proportion of wet avalanche days and days with no wet avalanches that 

correspond to the Old Snow Model's predicted probability ranges.  For example, about 

3% of all the days with no wet avalanches recorded in March from 1968-2001 and about 

6 % of all recorded wet avalanche days recorded in March from 1968-2001 were given a 

wet avalanche probability between 0-10%.  All but one recorded wet avalanches in the 

past 32 years have occurred when the model predicts a 31-80% probability for wet 

avalanche conditions.  The old snow model has a 75% overall success rate, that is, 75% 

of all the days in the old snow dataset were given accurate probabilities based on the 

model’s decision rule.  The old snow models decision rule is positioned at 57%, the point 
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that best divides the distributions of the observed wet avalanche days and no-wet-

avalanche days (Fig 19).  According to this decision rule, any day given a predicted wet 

avalanche probability of 57% or greater should be a wet avalanche day and any day given 

a predicted wet avalanche probability less than 57% should be a day without wet 

avalanches.   

 

Old S now Model B Entire Dataset Results:
Prediction Day Minimum Temperature and Two Day Change in Total S now Depth 
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Old Snow Model: MinT0, HS0-HS-2 1968-2001 Results 

 
In order to correctly interpret a probability calculated by the model, the following 

must be considered: how often does the model give observed wet avalanche days a 

probability of 57% or greater, and how often does the model give observed days with no 

wet avalanches a probability less than 57%?  There were 90 old snow days that were 

given a wet avalanche probability of 57% or greater (See “Old Snow Model Accuracy” 
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Table).  According to the model’s decision rule, all 90 days should be wet avalanche 

days.  Only 18 of the 90 days (20%) were observed wet avalanche days.  The remaining 

72 days (80%) were actually observed days with no wet avalanches that were given an 

inaccurate probability by the model.  There were 245 old snow days that were given a 

probability less than 57% by the model. According to the model’s decision rule, all 245 

days should be days with no wet avalanches.  Out of the 245 days, 231 days (94%) were 

days with no wet avalanches.  The remaining 14 days (6%) were inaccurately predicted 

observed wet avalanche days.   

 
Old Snow Model Accuracy  

Observed Old Snow         
Wet Avalanche Days

Observed Old Snow         
No-Wet-Avalanche Days

Old Snow Model 
Predicted Wet 
Avalanche Day 
(Probability > 57%)

18 days                    
(correctly predicted)

72 days                    
(incorrectly predicted)

Total: 90 days

Old Snow Model 
Predicted No-Wet-
Avalanche Day 
(Probabiltiy < 57%)

14 days                    
(incorrectly predicted)

231 days                   
(correctly predicted)

Total: 245 days

Total: 32* days Total: 303* days  
*One wet avalanche day and 6 no-wet-avalanche days were missing data. 
 
  

What this means for the model user is when the old snow model calculates a wet 

avalanche probability between 0-56%, 9 out of 10 days will not have wet avalanches.  

When the model calculates a wet avalanche probability between 57-100%, only 2 out of 

10 days will have wet avalanche conditions.  To gain more confidence in the model’s 

predicted probability, the user can compare the prediction day’s meteorological and 
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snowpack conditions with historical wet avalanche data to determine whether current 

conditions are similar to wet avalanche conditions in the past. 

Each variable in the four graphs below were found to be good predictors for old 

snow wet avalanche conditions.  The graphs show you the maximum, minimum and most 

common day of year, temperatures, and change in total snowpack that have been 

recorded on wet avalanche days between 1968-2001. For example, look at the “Old 

Snow:  Day of Year Distribution” graph, wet avalanche activity appears to be at its 

minimum during the first five days of March (day 60-64).  Wet avalanche activity 

generally increases from day 65 through day 84 and begins to taper off during the last 6 

days of March.  The “Old Snow: MaxT0 Distribution” graph shows you the event day 

maximum temperature range for all the wet avalanche days that were recorded between 

1968-2001.  The “Old Snow: MinT0 Distribution” graph shows the event day minimum 

temperature for all of the recorded wet avalanches between 1968-2001.  The “Old Snow: 

HS0-HS-2 Distribution” graph shows the range in the difference in total snowpack depth 

between the prediction day and two days prior to the prediction day for all of the wet 

avalanches recorded between 1968-2001.   
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Old Snow Wet Avalanche Day: 
'Day' of Year Distribution
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Old Snow Wet Avalanche Days:  Day of Year Distribution 
 
 

Old Snow Wet Avalanche Day: 
'Prediction Day Maximum Temperature' Distribution
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Old Snow Wet Avalanche Days: MaxT0 Distribution 
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Old Snow Wet Avalanche Days: MinT0 Distribution  
 

Old Snow Wet Avalanche Day: 
'Two Day Change in Total Snow Depth' Distribution

0

2

4

6

8

10

12

14

-18 to -16 -16 to -14 -14 to -12 -12 to -10 -10 to -8 -8 to -6 -6 to -4 -4 to -2 -2 to 0

Two Day Change in Total Snow Depth  (cm)

N
um

be
r 

of
 W

et
 A

va
la

nc
he

 D
ay

s

 
Old Snow Wet Avalanche Days: HS0-HS-2 Distribution 
 

Old Snow Wet Avalanche Day: 
'Prediction Day Minimum Temperature' Distribution
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Suppose today’s minimum temperature is -7°C and the total snowpack depth has 

decreased by 3cm between today and two days before today.  Given this information, the 

Old Snow Model calculates a 32% probability for wet avalanche conditions today.  Based 

on the Old Snow Model’s decision rule, we know that 9 out of 10 times will be a day 

with no wet avalanches whenever the model gives a probability lower than 57%, but 

there is still a 1 in 10 chance that the prediction day could be a wet avalanche day.  Look 

at the four predictor variable graphs above to find more support for the model’s 

prediction.  The “Old Snow: MinT0 Distribution” graph shows that there has never been a 

wet avalanche recorded on a day with a minimum temperature of -7°C. The “Old Snow: 

HS0-HS-2 Distribution” graph shows that only 3 wet avalanche days have occurred 

between 1968-2001 when the snowpack has settled 3cm over the two days prior to the 

event day.  Given the fairly low probability predicted by the model, and the rather low 

wet avalanche day occurrence on similar days in the past, the likelihood of wet avalanche 

conditions is relatively low, although still possible.  It may be a good idea to look at a 

couple of the other predictor variable graphs such as the “Old Snow: Day or Year 

Distribution” graph  and the “Old Snow: MaxT0 Distribution” graph.  Is it the second, 

third or fourth full week in March?  If so, the past data show that wet avalanche 

occurrence increases at this time.  How warm do you expect it to be today?  In the past, 

wet avalanche occurrence increases steadily once maximum temperatures reach 6°C or 

greater.  Information from these predictor variable graphs can give you more support for 

your wet avalanche safety decisions. 
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New Snow Prediction Model Graphs  

The "New Snow Model: MinT0, HNW0,-1,-2,-3 1968-2001 Results" graph describes the 

proportion of wet avalanche days and days with no wet avalanches that correspond to the 

New Snow Model's predicted probability ranges.  For example, about 21% of all the days 

with no wet avalanches and about 13% of all wet avalanche days recorded in March 

between 1968-2001were given a wet avalanche probability between 0-10% by the New 

Snow Model. The New Snow Model gave all the wet avalanches that occurred between 

1968-2001 a wet avalanche probability of 11-80%.   
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New Snow Model: MinT0, HNW0,-1,-2,-3 1968-2001 Results 

 
The new snow model has a 72% overall success rate, in other words, 72% of all 

the days in the new snow dataset were given accurate probabilities based on the model’s 

decision rule.  The new snow model’s decision rule is positioned at 45%, the point that 
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best divides the distributions of the observed wet avalanche days and days with no wet 

avalanches.  According to the new snow model’s decision rule, any day that is given a 

wet avalanche probability of 45% or greater should be a wet avalanche day and any day 

given a predicted wet avalanche probability less than 45% should be a day without wet 

avalanches.  The same questions asked of the old snow model must be taken into 

consideration with the new snow model in order to correctly interpret its predicted 

probabilities:  how often does the model give observed wet avalanche days a probability 

of 45% or greater, and how often does the model give observed days with no wet 

avalanches a probability less than 45%?  There were a total of 195 new snow days that 

were given a wet avalanche probability of 45% or greater (“New Snow Model Accuracy” 

Table).  According to the new snow model’s decision rule, all 195 days should be wet 

avalanche days.  Only 18 days (9%) were observed wet avalanche days.  The remaining 

177 days (91%) were observed days with no wet avalanches that were inaccurately given 

a probability greater than 45%.  There were 477 days in the new snow dataset that were 

given a wet avalanche probability less than 45%. According to the new snow model’s 

decision rule, all 477 days should be days with no wet avalanches.  Of the 477 days, 456 

days (96%) were observed days with no wet avalanches.  The remaining 21 days (4%) 

were observed wet avalanche days that were given inaccurate probabilities by the model. 
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New Snow Model Accuracy 

Observed New Snow         
Wet Avalanche Days

Observed New Snow         
No-Wet-Avalanche Days

Old Snow Model 
Predicted Wet 
Avalanche Day 
(Probability > 57%)

18 days                    
(correctly predicted)

177 days                   
(incorrectly predicted)

Total: 195 days

Old Snow Model 
Predicted No-Wet-
Avalanche Day 
(Probabiltiy < 57%)

21 days                    
(incorrectly predicted)

456 days                   
(correctly predicted)

Total: 477 days

Total: 39 days Total: 633* days  
*71 no-wet-avalanche days were missing data. 

 
 Interpretation of the new snow model’s predicted wet avalanche probability is 

similar to the interpretation described for the old snow model.  Based on 32 years of wet 

avalanche data, when the new snow model calculates a wet avalanche probability 

between 0-44%, 9 out of 10 days will not have wet avalanches.  When the new snow 

model calculates a wet avalanche probability between 45-100%, only 1 out of 10 days 

will be a wet avalanche day.  As with the old snow model, the user can compare the 

prediction day’s meteorological and snowpack conditions with historical wet avalanche 

data to determine whether current conditions are similar to wet avalanche conditions in 

the past. 

Each variable in the four graphs below were found to be good predictors for new 

snow wet avalanche conditions.  The graphs show you the maximum, minimum and most 

common temperature, SWE and new snow depths that have been recorded on wet 

avalanche days between 1968-2001. For example look at the “New Snow: MinT0 
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Distribution” graph, only 1 day between 1969-2001 had recorded wet avalanches when 

the minimum temperature was -17°C and 9 days had recorded wet avalanches when the 

minimum temperature was -7°C.  The “New Snow: HN0,-1,-2 Distribution” graph shows 

the cumulative two day new snow depth range for all of the recorded wet avalanches 

between 1968-2001.  The “New Snow: HNW0,-1,-2,-3 Distribution” graph shows you the 

cumulative three day SWE range for all the wet avalanche days that were recorded 

between 1968-2001.  The “New Snow: MaxT-1-MinT0 Distribution” graph shows the 

overnight temperature range prior to the prediction day distribution for all of the wet 

avalanches recorded between 1968-2001.   

 

New Snow Wet Avalanche Day:
'Prediction Day Minimum Temperature' Distribution
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New Snow Wet Avalanche Day: MinT0 Distribution 
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New Snow Wet Avalanche Day:
'Two Day Cumulative New Snow Depth' Distribution
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New Snow Wet Avalanche Day: HN0,-1,-2 Distribution 

 

New Snow Wet Avalanche Day :
'Three Day Cumulative New Snow Water Equivalent' Distribution
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New Snow Wet Avalanche Day: HNW0,-1,-2,-3 Distribution 
 



296 

New Snow Wet Avalanche Day:
'Overnight Temperature Range' Distribution
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New Snow Wet Avalanche Day: MaxT-1-MinT0 Distribution 
 
 

Suppose today's minimum temperature is -5°C and the cumulative three day SWE 

is 1.0cm.  The New Snow Model calculates a 40% probability for wet avalanche 

conditions to develop today.  Given the New Snow Model’s decision rule, 9 out of days 

10 days will not have wet avalanches when the model predicts a probability less than 

45%, but there is still a 1 in 10 chance that the prediction day could be a wet avalanche 

day.  The "New Snow Model: MinT0, HNW0,-1,-2,-3 1968-2001 Results" graph  shows that 

more days with no wet avalanches than wet avalanche days have occurred in the past 

when the model gives a probability within the 31-40% range.  Now look at the “New 

Snow: MinT0 Distribution” graph and the “New Snow: Day HNW0,-1,-2,-3 Distribution” 

graph. Several wet avalanche days have been recorded in the past when the minimum 

temperature was -5°C.  A cumulative three day SWE total of 1.0cm is within the 1 to 2cm 
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range, which is one of the most frequent producers of wet avalanche days in the past.  

Given that 1 out of 10 days are wet avalanche days when the model gives a probability 

less than 45%, and how many wet avalanche days have occurred in the past with the 

same minimum temperature and SWE values, there is a chance that wet avalanche 

conditions could develop today.  If you needed more information to back up your 

decision, you could compare your cumulative two day new snow totals and last night’s 

temperature range with the wet avalanche day occurrences in the  “New Snow: HN0,-1,-2 

Distribution”  graph and the “New Snow: MaxT-1-MinT0 Distribution” graph. 

 
 
 

 
 


